區(qū)熔法制備的藕狀多孔銅氣孔結(jié)構(gòu)及其壓縮性能研究
本文關(guān)鍵詞:區(qū)熔法制備的藕狀多孔銅氣孔結(jié)構(gòu)及其壓縮性能研究 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 藕狀多孔銅 區(qū)域熔煉法 氫氣壓力 牽引速率 氣孔結(jié)構(gòu) 力學(xué)性能
【摘要】:金屬-氣體共晶定向凝固技術(shù)(Gasar)是近年來發(fā)展起來的制備多孔金屬的新工藝。利用該工藝制備的多孔金屬,其內(nèi)部為沿凝固方向定向排列的圓柱形氣孔,結(jié)構(gòu)與蓮藕根相似,因此也常被稱作藕狀多孔金屬。藕狀多孔金屬特殊的孔隙結(jié)構(gòu)使得其具備諸多特殊的性能,在結(jié)構(gòu)材料、功能材料等領(lǐng)域具備重要的應(yīng)用價值。區(qū)域熔煉法能夠通過控制其牽引速率來使凝固過程中的凝固速率維持恒定,可制備出氣孔分布均勻的藕狀多孔金屬材料,且在區(qū)熔工藝中不需要使用坩堝和鑄型,能夠避免金屬受到污染。本課題采用區(qū)域熔煉法制備了不同結(jié)構(gòu)的藕狀多孔銅,分析了氫氣壓力和牽引速率兩個工藝參數(shù)對藕狀多孔銅氣孔結(jié)構(gòu)和形貌的影響規(guī)律。結(jié)果表明:在氫氣壓力為0.1MPa至0.4MPa內(nèi),隨著氫氣壓力的增大,氣孔率呈先增大后減小的趨勢,在氫氣壓力為0.2MPa時,氣孔率最大,為19.52%;平均氣孔直徑由0.89mm減小至0.42mm,氣孔直徑的分布范圍逐漸變窄,氣孔尺寸的均勻性提高;氣孔數(shù)密度由 27.77/(100mm2)增加至 94.79/(100mm2)。在氣體總壓為0.4MPa,而氫氣分壓為0至0.4MPa內(nèi)的情況下,隨著氫氣分壓的增大,氣孔率由0增加至16.88%;平均氣孔直徑由0增大至0.42mm,氣孔直徑的分布范圍因氫氣分壓的增大而變寬,氣孔尺寸的均勻性降低;孔數(shù)密度呈現(xiàn)先減小后增大的趨勢,其中,在氫氣分壓為0.3MPa時,氣孔數(shù)密度最小,為62.79/(100mm2)。氫氣壓力為0.2MPa時,隨牽引速率由10mm·min-1增大至30mm·min-1,氣孔率由9.88%逐漸增大至23.44%;平均氣孔直徑由0.81mm減小至0.64mm;氣孔數(shù)密度由16.06/(100mm2)逐漸增大至57.88/(100mm2);牽引速率對氣孔直徑分布并沒有太大的影響。在室溫環(huán)境下測試了藕狀多孔銅的壓縮性能,分析了氣孔結(jié)構(gòu)參數(shù)(氣孔率及平均氣孔直徑)對壓縮性能的影響規(guī)律,并討論了藕狀多孔銅的壓縮變形方式。結(jié)果表明:隨氣孔率由5.61%增加至24.11%,區(qū)熔藕狀多孔銅的壓縮應(yīng)力-應(yīng)變曲線的斜率逐漸減小,其壓縮屈服強度由25.63MPa逐漸減小至12.61MPa,單位體積吸收能由39.53MJ·m-3逐漸減小至29.38MJ.m-3,楊氏模量由2.76Gpa逐漸減小至1.1OGPa,密實化初始應(yīng)變值由40.11%增大至44.76%,抵抗塑性變形的能力隨氣孔率的增大而降低。在氣孔率為13%情況下,平均氣孔直徑由0.52mm增大至0.61mm后,區(qū)熔藕狀多孔銅的壓縮屈服強度、密實化初始應(yīng)變值、單位體積吸收能及楊氏模量都有一定程度的增大,抵抗塑性變形的能力提高;藕狀多孔銅在壓縮變形過程中的主要變形方式為氣孔孔壁的彎曲變形和折疊變形。
[Abstract]:Directional solidification of metal gas eutectic (Gasar) is a new process for the preparation of porous metal developed in recent years. The preparation process of porous metal, its internal cylindrical pores along the solidification direction, and structure of lotus root is similar, so it is often called the lotus type porous metal pore structure. Lotus type porous metal special makes it have many special properties in structural materials, have important application value in the field of functional materials. The zone melting method to maintain a constant through the traction speed to control the solidification rate during the solidification process, can be prepared by Lotus type porous metal material uniform pore size distribution, and do not need to the use of crucible and mold in the zone melting process, to avoid metal contamination. The zone melting of lotus type porous copper with different structure were prepared, analyzed the hydrogen pressure and pulling rate Influence of two parameters on the lotus type porous copper pore structure and morphology. The results showed that: in the hydrogen pressure of 0.1MPa to 0.4MPa, with the increase of hydrogen pressure, the porosity increases, the hydrogen pressure is 0.2MPa, the porosity is 19.52%, the average pore diameter by 0.89mm; reduced to 0.42mm, the distribution range of the pore diameter gradually narrowed, the uniformity of pore size increases; the pore number density by 27.77/ (100mm2) increased to 94.79/ (100mm2). The total gas pressure was 0.4MPa, while the hydrogen partial pressure of 0 to 0.4MPa in the case, with the increase of hydrogen pressure, the porosity by 0 increased to 16.88%; the average pore diameter increases from 0 to 0.42mm, the distribution range of the pore diameter increases with the partial pressure of hydrogen increaecs uniformity of pore size decreased; pore number density decreased first and then increased, which, in the hydrogen partial pressure is 0.3MP A, the pore number density minimum, 62.79/ (100mm2). The hydrogen pressure is 0.2MPa, with the traction rate increased to 30mm by 10mm - min-1 - min-1, the porosity increases from 9.88% to 23.44%; the average pore diameter decreased from 0.81mm to 0.64mm; the pore number density by 16.06/ (100mm2) to 57.88/ (increased gradually 100mm2); traction rate on the pore diameter distribution is not significantly affected. The compression performance of lotus type porous copper test at room temperature, analysis of pore structure parameters (porosity and average pore diameter) influence of compression performance, and discusses the way of compression deformation of lotus type porous copper. The results show that as the porosity increases from 5.61% to 24.11%, zone melting of lotus type porous copper compression slope of stress - strain curve decreases, the compressive yield strength by 25.63MPa gradually reduced to 12.61MPa, per unit volume of absorbed energy by 39.53MJ - M-3 gradually reduced to 29. 38MJ.m-3, Young's modulus gradually from 2.76Gpa to 1.1OGPa, the density of the initial strain value increases from 40.11% to 44.76%, increasing the ability to resist plastic deformation with the porosity decreases. The porosity was 13% cases, the average pore diameter increased from 0.52mm to 0.61mm after zone melting of lotus type porous copper compression yield strength densification, initial strain, energy absorption per unit volume and modulus are increased to a certain extent, improve the capacity of plastic deformation resistance; lotus type porous copper in compression deformation is the main deformation ways in the process of bending deformation of hole wall and folding deformation.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.11;TB383.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋群玲;金青林;楊天武;周榮;;GASAR多孔Cu-1.3Cr合金制備及結(jié)構(gòu)特征[J];特種鑄造及有色合金;2015年06期
2 文志春;金青林;宋群玲;蔣業(yè)華;;氣壓對藕狀多孔Cu-Cr合金氣孔結(jié)構(gòu)及形貌的影響[J];材料熱處理學(xué)報;2014年11期
3 楊倩倩;劉源;李言祥;張言;;定向凝固藕狀多孔Si的孔結(jié)構(gòu)(英文)[J];Transactions of Nonferrous Metals Society of China;2014年11期
4 梁娟;楊天武;李再久;謝明;金青林;;Ag-O系定向凝固制備藕狀多孔Ag[J];貴金屬;2014年S1期
5 宋群玲;金青林;李再久;楊天武;周榮;;金屬/氫共晶定向凝固制備GASAR多孔Cu-Cr合金[J];中國有色金屬學(xué)報;2014年10期
6 戴?;金青林;李再久;蔣業(yè)華;周榮;;Ni含量對多孔Cu-Ni合金孔隙率的影響[J];材料科學(xué)與工藝;2014年05期
7 李再久;金青林;楊天武;蔣業(yè)華;周榮;;Gasar連鑄工藝制備藕狀多孔銅[J];中國有色金屬學(xué)報;2014年06期
8 黃洲;宋群玲;金青林;楊天武;李再久;蔣業(yè)華;;藕狀多孔純Cu及多孔Cu-1.8%Cr合金鑄件的研究[J];鑄造;2014年06期
9 黃洲;金青林;宋群玲;楊天武;李再久;蔣業(yè)華;;規(guī)則多孔Cu-Cr合金的制備及其壓縮特性[J];稀有金屬;2014年04期
10 劉京雷;葉先勇;何元章;徐宏;;多孔金屬材料制備方法的研究進(jìn)展[J];材料導(dǎo)報;2013年13期
相關(guān)博士學(xué)位論文 前2條
1 李再久;Gasar多孔銅(合金)的氣孔結(jié)構(gòu)及其力學(xué)性能研究[D];昆明理工大學(xué);2014年
2 蔣光銳;氫在合金熔體中的溶解度與定向凝固多孔銅錳合金的研究[D];清華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前3條
1 黃洲;Cr合金化對藕狀多孔Cu壓縮性能的影響[D];昆明理工大學(xué);2014年
2 戴?;連鑄多孔Cu-Ni合金氣孔協(xié)同基體的生長行為[D];昆明理工大學(xué);2013年
3 申芳華;規(guī)則多孔銅基新型自潤滑材料制備工藝及其干摩擦磨損性能[D];昆明理工大學(xué);2012年
,本文編號:1373950
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1373950.html