層狀磁電裝置的性能優(yōu)化及構(gòu)型設(shè)計(jì)
本文關(guān)鍵詞:層狀磁電裝置的性能優(yōu)化及構(gòu)型設(shè)計(jì) 出處:《蘭州大學(xué)》2016年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 磁電效應(yīng) 磁場(chǎng)角度 溫度 二維 構(gòu)型設(shè)計(jì)
【摘要】:磁電效應(yīng)是介質(zhì)受磁場(chǎng)作用產(chǎn)生電極化,或受電場(chǎng)作用產(chǎn)生磁極化的物理現(xiàn)象。近年來(lái),由磁致伸縮材料和壓電材料組成的層狀復(fù)合磁電效應(yīng)裝置因?yàn)闃O其顯著的磁電特性,逐漸引起了人們的注意,并被不斷應(yīng)用于智能電子器件領(lǐng)域。目前,該領(lǐng)域的研究主要集中在提高裝置的磁電轉(zhuǎn)換效率。現(xiàn)已表明,影響轉(zhuǎn)換效率的因素主要包括:材料參數(shù)、外部磁場(chǎng)大小和驅(qū)動(dòng)磁場(chǎng)頻率,然而鮮有研究從理論角度解釋磁場(chǎng)方向和外部環(huán)境溫度對(duì)磁電轉(zhuǎn)換效率的影響。為此,本論文從磁場(chǎng)角度、環(huán)境溫度和結(jié)構(gòu)構(gòu)型入手,建立了磁電效應(yīng)多場(chǎng)耦合模型,優(yōu)化了層狀磁電裝置性能,同時(shí)提出了U型磁電裝置。具體內(nèi)容包括:首先,本論文基于彈性力學(xué)法,建立了的考慮磁場(chǎng)角度的層狀磁電效應(yīng)模型,并對(duì)不同磁場(chǎng)角度下的磁電效應(yīng)進(jìn)行了理論預(yù)測(cè),其預(yù)測(cè)結(jié)果與現(xiàn)有實(shí)驗(yàn)吻合較好。結(jié)果表明,磁場(chǎng)角度對(duì)磁電轉(zhuǎn)化效率影響顯著。當(dāng)交流磁場(chǎng)沿層狀磁電裝置長(zhǎng)度方向時(shí),存在一個(gè)最優(yōu)的直流磁場(chǎng)角度可以使得裝置獲得最大的磁電響應(yīng),直流磁場(chǎng)值越大,最優(yōu)角度越大。當(dāng)交流磁場(chǎng)置于寬度方向時(shí),無(wú)論直流磁場(chǎng)為何值,最優(yōu)的磁場(chǎng)角度總是在0o。但與前者不同,后者獲得最大磁電系數(shù)對(duì)應(yīng)的最優(yōu)磁場(chǎng)卻隨著磁場(chǎng)角度的增加而逐漸減小。同時(shí)本文也發(fā)現(xiàn),裝置在共振頻率的磁電轉(zhuǎn)換效率大致為低頻下的100倍,且轉(zhuǎn)換效率隨磁場(chǎng)角度的變化規(guī)律保持不變。本論文結(jié)果表明,在實(shí)際生產(chǎn)設(shè)計(jì)中,最好的磁電器件設(shè)計(jì)方案是直流磁場(chǎng)保持與交流磁場(chǎng)共線。這樣既可以獲得最大的磁電系數(shù),又不至于施加一個(gè)過(guò)大的直流磁場(chǎng)。其次,本論文基于等效電路法,建立了考慮環(huán)境溫度影響的功能梯度型層狀自偏磁電效應(yīng)模型。利用該模型得到的壓磁系數(shù)隨直流磁場(chǎng)的變化規(guī)律與現(xiàn)有的實(shí)驗(yàn)結(jié)果保持一致。其預(yù)測(cè)結(jié)果顯示,在較低的預(yù)應(yīng)力作用下(大約?50MPa),磁電轉(zhuǎn)換效率隨著溫度升高而減弱,而在較大的預(yù)應(yīng)力作用下,則會(huì)隨著溫度升高而增強(qiáng),但整體而言,較低的工作溫度和較小的預(yù)應(yīng)力更有利于功能梯度型自偏磁電裝置的磁電轉(zhuǎn)換。最后,本論文從結(jié)構(gòu)構(gòu)型設(shè)計(jì)角度出發(fā),提出了U型磁電裝置,并首次建立了該構(gòu)型的理論模型。結(jié)果表明,磁致伸縮材料越長(zhǎng),壓電材料越短,越有利于U型裝置的磁電效應(yīng)。同時(shí),實(shí)驗(yàn)結(jié)果顯示,當(dāng)共振頻率為91kHz時(shí),裝置獲得1.3V/cmOe的最大磁電轉(zhuǎn)換效率,而在低頻磁電系數(shù)也可達(dá)到0.225V/cmOe?傊,本論文從磁場(chǎng)角度、環(huán)境溫度和結(jié)構(gòu)構(gòu)型入手,完善和發(fā)展了磁電效應(yīng)多場(chǎng)耦合模型,并提出了U型磁電裝置。本文的理論分析、數(shù)值仿真以及實(shí)驗(yàn)工作豐富和發(fā)展了多場(chǎng)耦合磁電效應(yīng)理論,同時(shí)也對(duì)層狀磁電裝置的技術(shù)改進(jìn)和實(shí)際應(yīng)用具有一定的指導(dǎo)意義。
[Abstract]:The magnetoelectric effect is the physical phenomenon that the medium is polarized by the action of the magnetic field or by the action of the electric field. In recent years, the magnetostrictive material composed of magnetostrictive materials and piezoelectric materials has attracted much attention due to its remarkable magnetoelectric properties, and has been applied in the field of intelligent electronic devices. At present, the research in this field is mainly focused on improving the efficiency of the magnetoelectric conversion of the device. It has been shown that the factors that affect the conversion efficiency include material parameters, external magnetic field size and driving magnetic field frequency. However, few studies have explained theoretically the influence of magnetic field direction and external ambient temperature on the efficiency of magnetoelectric conversion. For this reason, starting from magnetic field angle, environment temperature and structure configuration, this paper establishes a multi field coupling model of magnetoelectric effect, optimizes the performance of the layered magnetoelectric device, and puts forward the U type magnetoelectric device. The main contents are as follows: first, based on the elastic mechanics method, a layered magnetoelectric effect model considering magnetic field angle is established, and the magnetoelectric effect under different magnetic field angles is theoretically predicted. The prediction results are in good agreement with the existing experiments. The results show that the magnetic field angle has a significant influence on the efficiency of the magnetoelectric conversion. When the AC magnetic field is along the length of the layered magnetoelectric device, there is an optimal DC magnetic field angle, which can make the device get the largest magnetoelectric response. The larger the DC magnetic field is, the larger the optimal angle is. When the AC magnetic field is placed in the direction of width, the optimal angle of magnetic field is always at 0o regardless of the value of the DC magnetic field. But different from the former, the optimal magnetic field corresponding to the maximum magnetoelectric coefficient decreases with the increase of the angle of the magnetic field. At the same time, it is also found that the efficiency of magnetoelectric conversion at resonance frequency is about 100 times lower than that at low frequency, and the conversion efficiency keeps unchanged with the variation of magnetic field angle. The results of this paper show that in the actual production design, the best design of the magnetoelectric device is the co - line between the DC magnetic field and the AC magnetic field. In this way, the maximum magnetoelectric coefficient can be obtained, and a large DC magnetic field is not applied. Secondly, based on the equivalent circuit method, a functionally graded self biased magnetoelectric effect model with the influence of ambient temperature is established. The variation of the piezomagnetic coefficient with the DC magnetic field is consistent with the existing experimental results. The forecast results show that in the prestressed low (about 50MPa?), magnetoelectric conversion efficiency decreases with the increase of temperature, and the prestressing force is large, it will be enhanced with the increase of temperature, but on the whole, lower working temperature and smaller pre stress is more conducive to the function gradient type magnetoelectric conversion partial electric device. Finally, from the perspective of structural configuration design, the U magnetoelectric device is proposed, and the theoretical model of the configuration is established for the first time. The results show that the longer the magnetostrictive material is, the shorter the piezoelectric material is, the more it is beneficial to the magnetoelectric effect of the U type device. Meanwhile, the experimental results show that when the resonant frequency is 91kHz, the maximum magnetoelectric conversion efficiency of 1.3V/cmOe is achieved, while the low frequency magnetoelectric coefficient can also reach 0.225V/cmOe. In a word, starting with the magnetic field angle, ambient temperature and structure configuration, the multi field coupling model of the magnetoelectric effect is perfected and developed, and the U type magnetoelectric device is put forward. The theoretical analysis, numerical simulation and experimental work in this paper enrich and develop the theory of multi field coupled magnetoelectric effect, and also have some guiding significance for the improvement and practical application of the layered magnetoelectric device.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 仲崇貴;蔣青;江學(xué)范;方靖淮;;單相多鐵性磁電體磁電起源及耦合機(jī)理分析[J];材料導(dǎo)報(bào);2009年03期
2 張耀榮;中國(guó)石油學(xué)會(huì)重磁電經(jīng)驗(yàn)交流會(huì)在南京召開(kāi)[J];新疆石油地質(zhì);1986年01期
3 ;港寧磁電工業(yè)發(fā)展有限公司[J];磁記錄材料;1989年02期
4 李擴(kuò)社;李紅衛(wèi);嚴(yán)輝;于敦波;張國(guó)成;;磁電復(fù)合材料的研究進(jìn)展[J];稀有金屬;2008年03期
5 李濤;賈利軍;張懷武;殷水明;陳世釵;;磁電復(fù)合材料的研究現(xiàn)狀及展望[J];電子元件與材料;2009年04期
6 軒敏杰;劉心宇;袁昌來(lái);許積文;馬家峰;;鈮酸鉀鈉/鐵酸鈷銅多鐵性磁電復(fù)合材料的制備及性能研究[J];無(wú)機(jī)材料學(xué)報(bào);2012年10期
7 劉樹(shù)貽;;用“圖文幻燈教學(xué)法”提高專(zhuān)業(yè)課教學(xué)質(zhì)量[J];有色金屬高教研究;1989年03期
8 ;磁電彈材料波動(dòng)與斷裂的力學(xué)行為研究[J];中國(guó)科技獎(jiǎng)勵(lì);2013年06期
9 葉井紅;楊成韜;王磊;;磁電復(fù)合材料的制備及研究進(jìn)展[J];材料導(dǎo)報(bào);2009年03期
10 石敏;于桂洋;周?chē)?guó)慶;蘇海林;許育東;伍光;王麗;陳綿松;于濤;;磁電復(fù)合材料的研究現(xiàn)狀及發(fā)展趨勢(shì)[J];金屬功能材料;2010年06期
相關(guān)會(huì)議論文 前10條
1 鄭鴻;楊成韜;;雙層磁電復(fù)合材料有限元仿真[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 馮巖;鄭世杰;;磁電彈性結(jié)構(gòu)自由振動(dòng)的有限元仿真[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
3 陳明明;董春迎;;磁電彈介質(zhì)夾雜界面上的磁電平衡條件[A];北京力學(xué)會(huì)第17屆學(xué)術(shù)年會(huì)論文集[C];2011年
4 魏建萍;蘇先樾;;用積分平均方法求解磁電彈性空心圓柱體中波的軸向傳播[A];祝賀鄭哲敏先生八十華誕應(yīng)用力學(xué)報(bào)告會(huì)——應(yīng)用力學(xué)進(jìn)展論文集[C];2004年
5 韓學(xué)禮;;磁電彈雙材料中三維位錯(cuò)形成的耦合場(chǎng)分析(英文)[A];北京力學(xué)會(huì)第19屆學(xué)術(shù)年會(huì)論文集[C];2013年
6 董春迎;;磁電彈圓環(huán)板的三維自由振動(dòng)分析[A];北京力學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文集[C];2008年
7 權(quán)紅英;董麗杰;熊傳溪;;PVDF基夾層磁電復(fù)合材料的制備和性能研究[A];2005年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年
8 鐘獻(xiàn)詞;李顯方;;磁電彈性介質(zhì)中圓形裂紋誘導(dǎo)的完全場(chǎng)[A];第二屆全國(guó)壓電和聲波理論及器件技術(shù)研討會(huì)摘要集[C];2006年
9 程長(zhǎng)征;丁昊;王大鵬;牛忠榮;;磁電彈材料反平面切口奇性分析[A];第16屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議會(huì)議程序冊(cè)[C];2012年
10 鄭涪升;馬爍懿;郭紅力;朱建國(guó);;PMNPT/CFO磁電復(fù)合材料參數(shù)的模擬計(jì)算[A];全國(guó)材料科學(xué)中的數(shù)學(xué)應(yīng)用研討會(huì)論文集[C];2010年
相關(guān)重要報(bào)紙文章 前8條
1 徐漢東;廬江出臺(tái)優(yōu)惠政策助推磁電產(chǎn)業(yè)發(fā)展[N];巢湖日?qǐng)?bào);2007年
2 楊立生邋劉宏偉;廬江磁電產(chǎn)業(yè)“明珠”閃耀[N];巢湖日?qǐng)?bào);2007年
3 記者 徐懿;時(shí)時(shí)創(chuàng)新提升企業(yè)抗風(fēng)險(xiǎn)能力[N];撫順日?qǐng)?bào);2009年
4 張安 程然;攻堅(jiān)克難求發(fā)展[N];中煤地質(zhì)報(bào);2011年
5 記者 潘少婷;嘉達(dá)磁電投2.8億元逆勢(shì)擴(kuò)產(chǎn)[N];東莞日?qǐng)?bào);2012年
6 本報(bào)記者 陸本,
本文編號(hào):1344540
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1344540.html