V2G充饋電定價(jià)機(jī)制研究
[Abstract]:After entering the 21st century, the energy crisis of large-scale exploitation and utilization of fossil energy, the environmental crisis is becoming more and more serious, and the electric power industry based on the development of traditional fossil energy is facing great challenges. The exploration of new energy has become a new research hotspot in the field of energy reform. Electric vehicle (Electric Vehicle,EV), as a new energy vehicle, has the characteristics of high energy efficiency, clean and environmental protection, etc. Under the trend of transforming intelligent transportation, Vehicle-to-Grid,V2G system is becoming a new research hotspot. With the support of smart grid, V2G can realize the two-way interaction between electric vehicle, charging station and power grid. With the high speed marketization of electric vehicles, the effect of charging and feeding behavior on the power grid will not be underestimated. The unreasonable charging behavior of electric vehicle users will cause the power grid to "add peak", and even form a new peak. By using V2G to reasonably control the charging behavior of users and to encourage users to actively participate in the feeders, the load curve of power network can be effectively optimized, and the utilization ratio and stability of power network can be improved. In this context, this paper will design a reasonable electricity price mechanism, encourage electric vehicle users to actively participate in V2G, reasonably plan their charging and feeding behavior, mitigate the impact on the stability of power grid, mainly include: first, Based on the mathematical method of least squares support vector machine (least squares support vector machine,LS-SVM) and combined with the improved ant colony algorithm, this paper realizes the effective forecasting of the daily load of power grid without electric vehicle access. The grid load curve will be used as the background load in the V2G scene, which is not only the guiding direction to guide the electric vehicle to regulate the charging behavior reasonably, but also one of the bases for the rational formulation of the V2G charging and feed price. Secondly, based on the urgency of charging demand, the users of electric vehicles are divided into flexible demand and rigid demand, and the utility function is introduced to measure the user satisfaction. At the same time, the cost of power supply is quantified based on the background load curve, and the optimization model is established from the angle of maximizing the fairness of time slot. In this model, the charging price will be set and published in the form of dynamic sliding window in real time to guide the charging behavior of EV, and compared with the random charging mode of EV under a single charge price. The effect of V2G charging pricing mechanism on load curve smoothing is verified. Finally, on the basis of V2G charging pricing mechanism, the random charging load curve of EV is modified under a single charge price, and a V2G feed pricing mechanism is proposed and simulated by Matlab. The reasonable V2G charging and feed pricing mechanism can effectively smooth the load curve and improve the operation stability.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U492.8;TM73
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李含怡;趙彩虹;陳笑;胡駿;陳子奇;;電動(dòng)汽車充放電模式對(duì)電網(wǎng)日負(fù)荷的影響[J];南京師范大學(xué)學(xué)報(bào)(工程技術(shù)版);2015年03期
2 李明洋;鄒斌;;電動(dòng)汽車充放電決策模型及電價(jià)的影響分析[J];電力系統(tǒng)自動(dòng)化;2015年15期
3 李龍;魏靖;黎燦兵;曹一家;宋軍英;方八零;;基于人工神經(jīng)網(wǎng)絡(luò)的負(fù)荷模型預(yù)測(cè)[J];電工技術(shù)學(xué)報(bào);2015年08期
4 王義軍;李殿文;高超;張洪赫;;基于改進(jìn)的PSO-SVM的短期電力負(fù)荷預(yù)測(cè)[J];電測(cè)與儀表;2015年03期
5 汪海燕;黎建輝;楊風(fēng)雷;;支持向量機(jī)理論及算法研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2014年05期
6 唐舟進(jìn);任峰;彭濤;王文博;;基于迭代誤差補(bǔ)償?shù)幕煦鐣r(shí)間序列最小二乘支持向量機(jī)預(yù)測(cè)算法[J];物理學(xué)報(bào);2014年05期
7 高亞靜;王辰;呂孟擴(kuò);梁海峰;;計(jì)及車主滿意度的電動(dòng)汽車最優(yōu)峰谷分時(shí)電價(jià)模型[J];電力自動(dòng)化設(shè)備;2014年02期
8 陳學(xué)有;文明浩;陳衛(wèi);楊波;;電動(dòng)汽車接入對(duì)電網(wǎng)運(yùn)行的影響及經(jīng)濟(jì)效益綜述[J];陜西電力;2013年09期
9 王晶;陳駿宇;藍(lán)愷;;基于實(shí)時(shí)電價(jià)的微網(wǎng)PSO最優(yōu)潮流算法研究[J];電力系統(tǒng)保護(hù)與控制;2013年16期
10 李成偉;劉俊勇;魏震波;;基于博弈論的電動(dòng)汽車放電電價(jià)研究[J];華東電力;2013年06期
相關(guān)博士學(xué)位論文 前1條
1 楊劍峰;蟻群算法及其應(yīng)用研究[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前4條
1 周玲芳;智能電網(wǎng)條件下的用戶側(cè)實(shí)時(shí)電價(jià)機(jī)制研究[D];華北電力大學(xué);2015年
2 王曉涵;電動(dòng)汽車充放電行為建模及V2G研究[D];廣西大學(xué);2014年
3 寇凌峰;電動(dòng)汽車大規(guī)模接入對(duì)電網(wǎng)的影響分析[D];華北電力大學(xué)(北京);2011年
4 唐燕影;基于灰色理論的電力負(fù)荷預(yù)測(cè)模型研究及系統(tǒng)實(shí)現(xiàn)[D];南昌大學(xué);2010年
,本文編號(hào):2404935
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2404935.html