開拓前煤與瓦斯突出危險(xiǎn)性區(qū)域預(yù)測技術(shù)研究
[Abstract]:Coal and gas outburst is one of the most serious natural disasters threatening coal mine safety. At present, the regional prediction of coal and gas outburst in China is mainly focused on the underground roadway after development, the point prediction based on the measured gas parameters, and the difficult problem of prediction of coal and gas outburst danger encountered in the field engineering practice before the development of coal and gas outburst. There has been no practical solution. Support vector machine (SVM), as a pattern recognition method which can solve many practical problems such as small sample, nonlinear and high dimension, has been widely used in many production fields. In order to improve the accuracy of coal and gas outburst prediction, this paper introduces support vector machine to establish a learning model to predict the outburst danger before the development of coal mine. Coal seam No. 9 in a certain mine of Lv Liang, Shanxi Province, has not been exposed, and there is no condition of underground gas parameter measurement. The law of gas occurrence in coal mine is studied, and the gas parameters measured in geological prospecting period of mine are collected and analyzed. The gas content in coal mine adjacent to the same geological unit is measured by the method of coal cuttings desorption by borehole, and the gas content in geological prospecting is corrected. According to the relationship between gas content and gas pressure, the indirect method is used to calculate the gas pressure in coal seam. There is a complex nonlinear relationship between coal and gas outburst and its various factors. This paper analyzes the feasibility of predicting coal and gas outburst by support vector machine. The particle swarm optimization (PSO),) algorithm is introduced to optimize the parameters of support vector machine (SVM), and the PSO-SVM prediction model of coal and gas outburst is established. The outburst samples of adjacent mines belonging to the same geological unit were collected as training samples, and the revised geological prospecting data of a certain mine of Lv Liang were used as test samples. The PSO-SVM algorithm program of coal and gas outburst prediction is compiled by MATLAB to predict coal and gas outburst in coal seam No. 9, which is consistent with the prediction results of single index method and synthetic index D and K method. The application of support vector machine based on particle swarm optimization is feasible in predicting the danger of coal and gas outburst before exploitation, which provides a direction for the prediction of coal and gas outburst before mine development.
【學(xué)位授予單位】:華北科技學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD713.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝宏;王凱;梁家輝;田進(jìn);;金家莊煤礦下組煤瓦斯賦存規(guī)律及其影響因素研究[J];煤炭技術(shù);2017年05期
2 王剛;武猛猛;程衛(wèi)民;陳金華;杜文州;;煤與瓦斯突出能量條件及突出強(qiáng)度影響因素分析[J];巖土力學(xué);2015年10期
3 牟全斌;;我國煤與瓦斯突出區(qū)域預(yù)測方法研究現(xiàn)狀及展望[J];煤炭科學(xué)技術(shù);2014年11期
4 唐巨鵬;楊森林;王亞林;呂家慶;;地應(yīng)力和瓦斯壓力作用下深部煤與瓦斯突出試驗(yàn)[J];巖土力學(xué);2014年10期
5 李紹泉;劉羿甫;王豐;聶國洪;李青松;;煤與瓦斯突出鑒定相關(guān)問題探討[J];煤炭科技;2013年03期
6 姜永東;鄭權(quán);劉浩;宋曉;;煤與瓦斯突出過程的能量分析[J];重慶大學(xué)學(xué)報(bào);2013年07期
7 謝和平;周宏偉;薛東杰;王宏偉;張茹;高峰;;煤炭深部開采與極限開采深度的研究與思考[J];煤炭學(xué)報(bào);2012年04期
8 胡新成;楊勝強(qiáng);蔣承林;周秀紅;鹿存榮;;煤與瓦斯突出危險(xiǎn)程度指標(biāo)層次分析模型的建立及應(yīng)用[J];煤炭工程;2011年04期
9 舒龍勇;程遠(yuǎn)平;王亮;蔣靜宇;翟清偉;孔勝利;;地質(zhì)因素對煤層瓦斯賦存影響的研究[J];中國安全科學(xué)學(xué)報(bào);2011年02期
10 施式亮;伍愛友;;基于神經(jīng)網(wǎng)絡(luò)與遺傳算法耦合的煤與瓦斯突出區(qū)域預(yù)測研究[J];中國工程科學(xué);2009年09期
相關(guān)博士學(xué)位論文 前6條
1 郭品坤;煤與瓦斯突出層裂發(fā)展機(jī)制研究[D];中國礦業(yè)大學(xué);2014年
2 李堯斌;瓦斯含量法預(yù)測煤與瓦斯突出試驗(yàn)研究[D];安徽理工大學(xué);2013年
3 陳鵬;煤與瓦斯突出區(qū)域危險(xiǎn)性的直流電法響應(yīng)及應(yīng)用研究[D];中國礦業(yè)大學(xué);2013年
4 楊恒;鶴壁八礦煤與瓦斯突出危險(xiǎn)性預(yù)測研究[D];遼寧工程技術(shù)大學(xué);2010年
5 高雷阜;煤與瓦斯突出的混沌動(dòng)力系統(tǒng)演化規(guī)律研究[D];遼寧工程技術(shù)大學(xué);2006年
6 李勝;煤與瓦斯突出區(qū)域預(yù)測的模式識(shí)別方法研究[D];遼寧工程技術(shù)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前4條
1 李浩威;姚家山5號(hào)煤層瓦斯賦存規(guī)律及層次分析法在瓦斯災(zāi)害預(yù)測中的應(yīng)用[D];中國礦業(yè)大學(xué);2015年
2 王曉磊;三家子礦煤層瓦斯賦存及涌出規(guī)律研究[D];遼寧工程技術(shù)大學(xué);2009年
3 朱莉;基于SVM的煤與瓦斯突出預(yù)測模型研究[D];西安科技大學(xué);2009年
4 徐學(xué)鋒;地質(zhì)構(gòu)造對煤與瓦斯突出的影響研究[D];遼寧工程技術(shù)大學(xué);2004年
,本文編號(hào):2288819
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2288819.html