基于聲表面波傳感技術(shù)煤礦瓦斯?jié)舛缺O(jiān)測系統(tǒng)研究
[Abstract]:Coal mine safety is an important work in coal production, and coal mine gas accident is the most important one in coal mine safety accidents. Coal mine gas accident has brought great threat to people's life and property safety. With the continuous development of monitoring technology and the urgent requirement of intelligent mine construction, it is of great significance to study a new and reliable coal mine gas monitoring system for improving coal mine gas safety monitoring technology. Full monitoring technology development requirements, is expected to play a huge role in coal mine gas detection. This paper focuses on the center frequency of 300 M delay line SAW gas sensor monitoring system, the main content is composed of two parts, hardware and software. Hardware part of the research, through the SAW gas Based on the analysis of the detection principle and method of the volume sensor, the gas concentration monitoring system is designed by the mixing detection method with double-channel delay line structure. The front-end part of the hardware circuit includes the high-frequency oscillation circuit, the mixing and its differential signal processing circuit. The high-frequency oscillation circuit is used to generate the center of the SAW sensor. Frequency-dependent 300M high-frequency oscillation signal. The high-frequency oscillation circuit uses a positive feedback oscillation circuit structure. The amplifier uses an INA-02186 integrated RF amplifier to provide the gain and loss of the oscillation circuit. The LC phase shifter adjusts the phase difference of the oscillation signal to keep the circuit in a stable state of oscillation. The mixing and its differential signal processing circuit are sensitive to passing. The local oscillator signal of the thin film material and the reference signal of the non-sensitive thin film material are mixed down, low-pass, amplified, and shaping into square wave signal which is easy to detect. The mixing circuit adopts integrated design structure, selects AD831 integrated chip as mixer, and sets the peripheral pin circuit to make the AD831 work in low-power mixing state. The 5th-order low-pass filter is used to remove the useless signal components of signal oscillation. The 2SC3355 high-power transistor amplifier is used to amplify the filtered signal. Finally, the 74HC14-based shaping circuit shapes the amplified oscillation signal into a square-wave signal which is easy to detect the frequency information. The back-end part includes MCU minimal system and acoustooptic warning, LCD display, SD card storage, USB download, communication circuit and other peripheral circuits. MCU extracts the frequency information of square wave signal processed by front-end circuit and converts it into concentration information. In the aspect of software research, using VB software as the design environment of the upper computer, the whole upper computer is divided into three parts: account management, user operation and data operation. The connection established by SS database makes the upper computer have the function of storing the concentration information transmitted by the lower computer, and calls the DataGrid control in the component, establishes the concentration information inquiry table in the upper computer. In addition, in view of the actual application situation, RS-485 communication and RS-485 master-slave communication are used to realize the remote sensing concentration information. Finally, the gas concentration monitoring system terminal with the function of acoustooptic alarm system monitoring is realized, and the sensor system is simplified to realize the design of a simple gas concentration monitoring sensor node. The actual preparation of the system and its practical application in underground coal mines have certain significance.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD712.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周江;;TTL、CMOS及施密特觸發(fā)器[J];大眾科技;2016年09期
2 羅斌;;MAX485的多點通信安防報警系統(tǒng)[J];電子世界;2016年11期
3 謝代梁;葛慎;胡朋兵;程佳;張建鋒;;有源光纖式流量傳感器的研究進(jìn)展[J];中國計量學(xué)院學(xué)報;2015年01期
4 穆辛;周新田;張慧慧;金銳;劉鉞楊;吳郁;;一種施密特觸發(fā)器型壓控振蕩器的設(shè)計與仿真[J];電子科技;2014年04期
5 曾以成;方清;李志軍;余世成;;MLC高階振蕩電路的研究與設(shè)計[J];湘潭大學(xué)自然科學(xué)學(xué)報;2013年04期
6 鄢芬;崔新友;余菲;鄒俊華;余燈;;聲表面波溫度傳感器的信號檢測方法與實現(xiàn)[J];測控技術(shù);2013年06期
7 馮子陵;俞建新;;RS485總線通信協(xié)議的設(shè)計與實現(xiàn)[J];計算機(jī)工程;2012年20期
8 黃軍;高曉蓉;王敏錫;羅林;;射頻電路中混頻器的設(shè)計[J];現(xiàn)代電子技術(shù);2012年13期
9 王立紅;;基于單片機(jī)的數(shù)字頻率計設(shè)計[J];電子世界;2012年10期
10 李川;杜曉松;胡佳;蔣亞東;;聲表面波氣體傳感器振蕩電路設(shè)計[J];傳感器與微系統(tǒng);2012年01期
相關(guān)博士學(xué)位論文 前1條
1 李淑紅;基于聲表面波技術(shù)的新型氣體傳感器的研究[D];南開大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 周晨蕾;面向聲表面波瓦斯傳感器的檢測報警系統(tǒng)研究[D];西安科技大學(xué);2016年
2 姚順奇;聲表面波傳感器高頻振蕩電路研究[D];西安科技大學(xué);2015年
3 白孝濤;聲表面波煤礦瓦斯傳感器匹配檢測電路設(shè)計與研究[D];西京學(xué)院;2015年
4 李川;聲表面波氣體傳感器陣列信號采集電路設(shè)計[D];電子科技大學(xué);2012年
5 左大偉;聲表面波氣體傳感器信號檢測電路的設(shè)計與優(yōu)化[D];電子科技大學(xué);2010年
6 黃超;聲表面波傳感器信號處理電路的設(shè)計[D];電子科技大學(xué);2009年
7 周洪林;聲表面波甲醛氣體傳感器研究[D];大連理工大學(xué);2007年
8 孫蕾;用于聲表面波甲醛傳感器的相關(guān)系統(tǒng)研究[D];大連理工大學(xué);2005年
,本文編號:2219395
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2219395.html