基于PSO-SVM的礦用CO傳感器非線性補(bǔ)償方法研究
發(fā)布時(shí)間:2018-08-20 15:36
【摘要】:隨著礦井環(huán)境信息感知、危險(xiǎn)源辨識(shí)等技術(shù)的發(fā)展,對(duì)氣體傳感器檢測(cè)精度和可靠性的要求顯著提高。為改善礦用氣體傳感器的性能,針對(duì)氣體傳感器補(bǔ)償方法存在的技術(shù)難題,提出一種微粒群優(yōu)化支持向量機(jī)(PSO-SVM)的非線性補(bǔ)償方法。以CO傳感器為例,采用Matlab軟件進(jìn)行數(shù)值仿真,BP神經(jīng)網(wǎng)絡(luò)方法將誤差從18.48%降到8.51%,而采用微粒群優(yōu)化支持向量機(jī)方法將誤差降到5.28%。實(shí)驗(yàn)結(jié)果表明:PSO-SVM補(bǔ)償方法能有效消除非目標(biāo)參量對(duì)傳感器輸出結(jié)果的影響從而完成非線性補(bǔ)償,提高了礦用CO傳感器的可靠性與檢測(cè)精度。
[Abstract]:With the development of mine environmental information perception and hazard source identification, the detection accuracy and reliability of gas sensors are greatly improved. In order to improve the performance of mine gas sensor, a nonlinear compensation method based on particle swarm optimization support vector machine (PSO-SVM) is proposed to solve the technical problems of gas sensor compensation. Taking CO sensor as an example, the error is reduced from 18.48% to 8.51% by using Matlab software and the error is reduced to 5.28% by using particle swarm optimization support vector machine method. The experimental results show that the proportion PSO-SVM compensation method can effectively eliminate the influence of non-target parameters on the output results of the sensor and thus achieve nonlinear compensation. The reliability and detection accuracy of the mine CO sensor are improved.
【作者單位】: 西安科技大學(xué)安全科學(xué)與工程學(xué)院;陜西省煤火災(zāi)害防治重點(diǎn)實(shí)驗(yàn)室;西安科技大學(xué)電氣與控制工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(51504186) 陜西省科技攻關(guān)項(xiàng)目(2016GY-191) 省教育廳科研專項(xiàng)項(xiàng)目(14JK1477)
【分類號(hào)】:TD711;TP18;TP212
,
本文編號(hào):2194143
[Abstract]:With the development of mine environmental information perception and hazard source identification, the detection accuracy and reliability of gas sensors are greatly improved. In order to improve the performance of mine gas sensor, a nonlinear compensation method based on particle swarm optimization support vector machine (PSO-SVM) is proposed to solve the technical problems of gas sensor compensation. Taking CO sensor as an example, the error is reduced from 18.48% to 8.51% by using Matlab software and the error is reduced to 5.28% by using particle swarm optimization support vector machine method. The experimental results show that the proportion PSO-SVM compensation method can effectively eliminate the influence of non-target parameters on the output results of the sensor and thus achieve nonlinear compensation. The reliability and detection accuracy of the mine CO sensor are improved.
【作者單位】: 西安科技大學(xué)安全科學(xué)與工程學(xué)院;陜西省煤火災(zāi)害防治重點(diǎn)實(shí)驗(yàn)室;西安科技大學(xué)電氣與控制工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(51504186) 陜西省科技攻關(guān)項(xiàng)目(2016GY-191) 省教育廳科研專項(xiàng)項(xiàng)目(14JK1477)
【分類號(hào)】:TD711;TP18;TP212
,
本文編號(hào):2194143
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2194143.html
最近更新
教材專著