基于PCA權(quán)重的化工報(bào)警閾值優(yōu)化
發(fā)布時(shí)間:2018-08-03 11:19
【摘要】:為避免海量報(bào)警影響正常操作,對(duì)報(bào)警閾值進(jìn)行了優(yōu)化.考慮了變量相關(guān)性,利用主元分析法(PCA)分析變量的重要程度,并求出變量權(quán)重;結(jié)合國際標(biāo)準(zhǔn),根據(jù)變量權(quán)重分配變量報(bào)警數(shù),優(yōu)化報(bào)警閾值;在平行坐標(biāo)圖上將變量數(shù)據(jù)及報(bào)警閾值可視化,查看正常和異常工況區(qū)域,考察各變量之間的變化趨勢(shì),提取有效報(bào)警值;對(duì)某工業(yè)原油常減壓操作數(shù)據(jù)進(jìn)行驗(yàn)證,結(jié)果表明優(yōu)化方法能有效減少報(bào)警數(shù).
[Abstract]:In order to avoid massive alarm affecting normal operation, the alarm threshold is optimized. Considering the correlation of variables, the importance of variables is analyzed by principal component analysis method (PCA), and the weight of variables is calculated, and the alarm threshold is optimized according to the international standard. The variable data and alarm threshold are visualized on the parallel coordinate graph, the normal and abnormal working condition regions are inspected, the variation trend among the variables is investigated, the effective alarm value is extracted, and the operating data of a certain industrial crude oil is verified. The results show that the optimization method can effectively reduce the number of alarms.
【作者單位】: 青島科技大學(xué)化工學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(編號(hào):21576143) 山東省自然科學(xué)基金資助項(xiàng)目(編號(hào):ZR2013BL008)
【分類號(hào)】:TE687;TP277
,
本文編號(hào):2161584
[Abstract]:In order to avoid massive alarm affecting normal operation, the alarm threshold is optimized. Considering the correlation of variables, the importance of variables is analyzed by principal component analysis method (PCA), and the weight of variables is calculated, and the alarm threshold is optimized according to the international standard. The variable data and alarm threshold are visualized on the parallel coordinate graph, the normal and abnormal working condition regions are inspected, the variation trend among the variables is investigated, the effective alarm value is extracted, and the operating data of a certain industrial crude oil is verified. The results show that the optimization method can effectively reduce the number of alarms.
【作者單位】: 青島科技大學(xué)化工學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(編號(hào):21576143) 山東省自然科學(xué)基金資助項(xiàng)目(編號(hào):ZR2013BL008)
【分類號(hào)】:TE687;TP277
,
本文編號(hào):2161584
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2161584.html
最近更新
教材專著