天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 安全工程論文 >

機(jī)械噴霧強(qiáng)化對(duì)瓦斯水合分離影響研究

發(fā)布時(shí)間:2018-07-29 14:07
【摘要】:加強(qiáng)瓦斯水合反應(yīng)的熱量、物質(zhì)傳遞過(guò)程,有效控制水合反應(yīng)速率、提高水合物產(chǎn)量是實(shí)現(xiàn)瓦斯水合固化儲(chǔ)運(yùn)技術(shù)工業(yè)化應(yīng)用的關(guān)鍵。因此,本文在諸多國(guó)內(nèi)外科研工作學(xué)者研究基礎(chǔ)上,針對(duì)甲烷含量為60%、70%、80%的高濃度瓦斯混合氣,分別開(kāi)展純水靜態(tài)(空白)體系和機(jī)械噴霧強(qiáng)化體系水合反應(yīng)實(shí)驗(yàn),考察機(jī)械噴霧手段、霧化噴嘴夾角、噴嘴流量對(duì)瓦斯水合物生長(zhǎng)速率、CH4回收率、分離因子和分配系數(shù)的影響并基于傳熱-傳質(zhì)理論模型初步分析了影響機(jī)理。純水靜態(tài)體系和機(jī)械噴霧體系實(shí)驗(yàn)結(jié)果對(duì)比表明:瓦斯混合氣樣G1、G2、G3在機(jī)械噴霧強(qiáng)化體系下的水合分離效果都優(yōu)于純水靜態(tài)體系,其對(duì)應(yīng)的水合物生長(zhǎng)速率最大值分別為0.395×10-6、0.379×10-6、0.367×10-6m3/min,相比純水靜態(tài)體系分別提高了5.41、2.63、3.71倍;CH4回收率最大值分別為24.23%、25.27%、24.51%,相比純水靜態(tài)體系分別提高了6.18、2.61、7.19倍;分離因子最大值分別為1.89、1.83、1.95,相比純水靜態(tài)體系分別提高了1.62、1.49、1.74倍;分配系數(shù)最大值分別為1.27、1.19、1.13,相比純水靜態(tài)體系分別提高了1.2、1.12、1.11倍。綜上所述,在三種瓦斯氣樣都采用機(jī)械噴霧手段強(qiáng)化水合分離過(guò)程的狀況下,對(duì)比相應(yīng)的純水靜態(tài)體系,氣樣G1在水合物生長(zhǎng)速率、分配系數(shù)方面改善幅度最大;氣樣G3在CH4回收率、分離因子方面改善幅度最大。不同霧化噴嘴夾角實(shí)驗(yàn)結(jié)果對(duì)比表明:相同驅(qū)動(dòng)力、噴嘴流量實(shí)驗(yàn)條件下,瓦斯混合氣樣G1、G2、G3的水合物生長(zhǎng)速率、CH4回收率、分離因子和分配系數(shù)受霧化噴嘴夾角影響規(guī)律一致,都是隨夾角度數(shù)的升高先增大后減小,影響順序?yàn)?45°30°60°90°。分析認(rèn)為,30°、45°霧化噴嘴對(duì)反應(yīng)體系水合物生長(zhǎng)環(huán)境影響較小,60°、90°霧化噴嘴對(duì)反應(yīng)體系水合物生長(zhǎng)環(huán)境影響較為惡劣。不同噴嘴流量實(shí)驗(yàn)結(jié)果對(duì)比表明:相同驅(qū)動(dòng)力、霧化噴嘴夾角實(shí)驗(yàn)條件下,瓦斯混合氣樣G1、G2、G3的水合物生長(zhǎng)速率、CH4回收率、分離因子和分配系數(shù)受?chē)娮炝髁坑绊懸?guī)律也一致,流量為20ml/min的噴嘴對(duì)反應(yīng)體系水合分離促進(jìn)效果優(yōu)于流量為10ml/min的噴嘴。分析認(rèn)為,增大噴霧循環(huán)體系噴嘴流量,不僅能夠加強(qiáng)氣液間的物質(zhì)(分子)傳遞過(guò)程,也能加快反應(yīng)體系水合物生成熱的流失速率。本文研究成果對(duì)后續(xù)相關(guān)研究工作的實(shí)驗(yàn)開(kāi)展與水合物工業(yè)生產(chǎn)具有重要科學(xué)意義與指導(dǎo)價(jià)值。
[Abstract]:The key to realize the industrial application of gas hydration curing storage and transportation technology is to strengthen the heat transfer process of gas hydration reaction effectively control the hydration reaction rate and increase the hydrate production. Therefore, based on the research of many domestic and foreign researchers, the hydration experiments of pure water static (blank) system and mechanical spray strengthened system were carried out for the high concentration gas mixture with methane content of 60% or 70%. The effects of mechanical spray method, atomizing nozzle angle, nozzle flow rate on methane hydrate growth rate and CH4 recovery, separation factor and distribution coefficient were investigated. Based on the heat and mass transfer theory model, the influence mechanism was preliminarily analyzed. The experimental results of pure water static system and mechanical spray system show that the hydration separation effect of gas mixture G1G2G3 is better than that of pure water static system. The maximum rate of hydrate growth was 0.395 脳 10-6 (0.379 脳 10-6) 0.367 脳 10-6m3 / min, respectively. Compared with the pure water static system, the maximum recovery rate of CH4 was increased by 5.41 ~ 2.63 ~ 3.71 times, respectively, and the maximum recovery rate of Ch _ 4 was 24.23 ~ 25.27 ~ 24.51% and 6.18 ~ 2.61g ~ (7.19) times higher than that of pure water static system, respectively. The maximum value of separation factor was 1.89 ~ 1.83 ~ 1.95, which was 1.62 ~ 1.49 ~ 1.74 times higher than that of pure water static system, and the maximum partition coefficient was 1.27 ~ 1.19 ~ 1.13, 1.22 ~ 1.12 ~ 1.11 times higher than that of pure water static system, respectively. In conclusion, under the condition that all three kinds of gas samples strengthen hydration separation process by mechanical spray, compared with the corresponding pure water static system, the gas sample G1 has the greatest improvement in hydrate growth rate and distribution coefficient. Gas sample G 3 has the greatest improvement in CH4 recovery and separation factor. The experimental results of different atomization nozzle angles show that under the same driving force and nozzle flow test conditions, the gas mixture G1G2G3 hydrate growth rate and CH4 recovery rate, separation factor and distribution coefficient are consistent with the influence of atomizing nozzle angle on gas hydrate growth rate. The influence order is 45 擄30 擄60 擄90 擄. It is considered that the influence of 30 擄~ 45 擄atomization nozzle on the hydrate growth environment of the reaction system is less than that of the 60 擄~ 90 擄atomizing nozzle on the reaction system hydrate growth environment. The experimental results of different nozzles showed that under the same driving force and atomization nozzle angle, the gas mixture G1G2G3 hydrate growth rate and CH4 recovery rate, separation factor and distribution coefficient influenced by nozzle flow rate were also consistent. The effect of the nozzle with flow rate of 20ml/min on the hydration separation of reaction system is better than that of the nozzle with flow rate of 10ml/min. It is concluded that increasing the nozzle flow rate of the spray cycle system can not only enhance the material (molecular) transfer process between gas and liquid, but also accelerate the heat loss rate of hydrate formation in the reaction system. The research results in this paper are of great scientific significance and guiding value for the experimental development of related research work and the production of hydrate industry.
【學(xué)位授予單位】:黑龍江科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD712

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳強(qiáng);張家豪;高霞;劉傳海;;干水和THF-SDS對(duì)瓦斯水合分離的影響[J];黑龍江科技大學(xué)學(xué)報(bào);2016年04期

2 吳強(qiáng);張家豪;高霞;劉傳海;;熱力學(xué)促進(jìn)劑對(duì)瓦斯水合物相平衡的影響[J];黑龍江科技大學(xué)學(xué)報(bào);2016年03期

3 吳強(qiáng);王世海;張保勇;劉昌嶺;高霞;;THF對(duì)高濃度CH_4瓦斯水合分離效果影響實(shí)驗(yàn)[J];煤炭學(xué)報(bào);2016年05期

4 吳強(qiáng);周竹青;高霞;張強(qiáng);張保勇;;NaCl溶液中多組分瓦斯水合物的成核誘導(dǎo)時(shí)間[J];煤炭學(xué)報(bào);2015年06期

5 吳強(qiáng);岳彥兵;張保勇;高霞;張強(qiáng);吳瓊;;THF-SDS對(duì)瓦斯水合分離過(guò)程溫度場(chǎng)分布影響[J];煤炭學(xué)報(bào);2015年04期

6 吳強(qiáng);朱福良;高霞;張保勇;;晶體類(lèi)型對(duì)含瓦斯水合物煤體力學(xué)性質(zhì)的影響[J];煤炭學(xué)報(bào);2014年08期

7 吳瓊;吳強(qiáng);張保勇;高霞;;丙烷對(duì)瓦斯混合氣水合物相平衡的影響[J];煤炭學(xué)報(bào);2014年07期

8 吳強(qiáng);;煤礦瓦斯水合化分離試驗(yàn)研究進(jìn)展[J];煤炭科學(xué)技術(shù);2014年06期

9 張強(qiáng);吳強(qiáng);張保勇;高霞;;干水對(duì)瓦斯混合氣水合分離動(dòng)力學(xué)影響研究[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2014年04期

10 劉煌;吳雨晴;陳光進(jìn);劉蓓;楊蘭英;潘勇;;油水乳液分離沼氣實(shí)驗(yàn)研究[J];化工學(xué)報(bào);2014年05期

相關(guān)碩士學(xué)位論文 前3條

1 葉洋;TBAB體系水合物法提純低濃度含氧煤層氣的實(shí)驗(yàn)研究及過(guò)程模擬[D];重慶大學(xué);2012年

2 徐濤濤;低濃度瓦斯水合物生成動(dòng)力學(xué)及促進(jìn)劑實(shí)驗(yàn)研究[D];黑龍江科技學(xué)院;2011年

3 龐博;低濃度煤礦抽采瓦斯水合分離相平衡熱力學(xué)實(shí)驗(yàn)研究[D];黑龍江科技學(xué)院;2011年



本文編號(hào):2152920

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2152920.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b8e74***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com