采動影響下覆巖應(yīng)變—孔隙率—滲透率演化模型開發(fā)及應(yīng)用
本文選題:巖層移動模型 + 地表沉陷觀測 ; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文
【摘要】:采場覆巖會隨著工作面的推進(jìn)發(fā)生移動、變形和破斷等運(yùn)動,縱向上形成“豎三帶”,不同區(qū)域內(nèi)的巖層受擾動后的滲透率變化也不同。因此,采動覆巖滲透率分布的研究對掌握瓦斯在采動覆巖中的運(yùn)移規(guī)律進(jìn)而提高井下抽采瓦斯效率均有重要意義。本文首先引入應(yīng)用于地表沉陷計(jì)算的影響函數(shù)法,推廣建立了分區(qū)情況下的工作面上覆巖層移動模型,對關(guān)鍵參數(shù)選取進(jìn)行討論并合理地優(yōu)化。為了驗(yàn)證移動模型的可靠性,通過在工作面上方地表設(shè)立地表沉陷觀測站以及利用數(shù)值模擬方法對其地表的觀測結(jié)果、覆巖層運(yùn)動的模擬結(jié)果與模型的理論計(jì)算結(jié)果進(jìn)行了雙向?qū)Ρ闰?yàn)證;谇笆龈矌r層移動計(jì)算模型,進(jìn)一步開發(fā)了描述采動巖層應(yīng)變-孔隙率-滲透率之間的模型。通過分析覆巖移動、垮落規(guī)律,在縱向上按覆巖發(fā)育“豎三帶”分別發(fā)展了巖層滲透率計(jì)算方法,主要取得以下成果:(1)開發(fā)了基于影響函數(shù)法的巖層移動模型,依據(jù)“豎三帶”分區(qū)建立不同區(qū)域內(nèi)巖層的移動模型,并對其中涉及到的關(guān)鍵參數(shù)進(jìn)行討論與優(yōu)化。(2)基于“豎三帶”不同區(qū)域內(nèi)采空區(qū)上覆巖層的移動特性,分別建立了巖層應(yīng)變-孔隙率-滲透率模型,可對冒落帶巖層(孔隙發(fā)育為主)、裂隙帶以及彎曲下沉帶巖層(裂隙發(fā)育為主)的滲透率分別進(jìn)行計(jì)算。(3)以陽煤五礦8133工作面為工程背景,將上述模型的理論結(jié)果分別與地表沉陷觀測和3DEC數(shù)值模擬進(jìn)行了對比,結(jié)果表明所建立的巖層移動數(shù)值模型的計(jì)算結(jié)果和實(shí)測吻合程度較高;同時,模擬結(jié)果表明垮落帶最終發(fā)育高度為57.3m,巖層移動模型計(jì)算結(jié)果則為55.87m,二者之間的偏差較小。(4)利用開發(fā)的巖層應(yīng)變-孔隙率-滲透率模型對陽煤五礦8133工作面覆巖進(jìn)行了滲透率分布變化的計(jì)算,計(jì)算結(jié)果表明:采空區(qū)上方55.87m附近的巖層受采動影響,裂隙較發(fā)育,滲透率變化大。結(jié)合礦方瓦斯治理的需求,提出了高抽巷層位高度設(shè)計(jì)的優(yōu)化方案,在實(shí)際工程效果中對工作面瓦斯抽采效果良好,其中高抽巷的瓦斯抽采量占到了工作面瓦斯總抽采量的96.76%以上。本文建立了一套分區(qū)計(jì)算巖層移動模型,以及相應(yīng)的巖層應(yīng)變-孔隙率-滲透率模型,利用現(xiàn)場觀測、模擬分析驗(yàn)證模型可靠性,也取得了一定的工程效果。結(jié)果證明,理論計(jì)算結(jié)果具有良好的可靠性及實(shí)用性。通過本文的研究,針對采動覆巖建立的巖層移動模型以及應(yīng)變-孔隙率-滲透率計(jì)算模型不但有利于井下瓦斯抽采,而且可以進(jìn)一步推廣應(yīng)用于治理地層水涌出、設(shè)計(jì)地表保水開采方案等。
[Abstract]:The overburden rock of stope will move, deform and break with the advance of the working face, and form vertical "vertical three zones", and the permeability changes of rock strata in different areas are also different after disturbance. Therefore, the study of permeability distribution of mining overburden rock is of great significance for mastering the migration law of gas in mining overburden rock and improving the efficiency of underground gas extraction. In this paper, the influence function method which is applied to the calculation of surface subsidence is introduced, and the model of overlying strata movement is established in the case of subdivision. The selection of key parameters is discussed and optimized reasonably. In order to verify the reliability of the moving model, the surface subsidence observation station is set up above the working face and the observation results of the surface are obtained by using numerical simulation method. The simulation results of overlying strata are compared with the theoretical results of the model. Based on the above calculation model of overlying strata movement, a model describing the strain-porosity permeability of mining strata is developed. Based on the analysis of overburden movement and collapse law, the calculation method of strata permeability is developed according to the vertical three zones of overburden rock in longitudinal direction. The main achievements are as follows: (1) the model of strata movement based on influence function method is developed. According to the division of "vertical three zones", the movement model of strata in different regions is established, and the key parameters involved in it are discussed and optimized. (2) based on the characteristics of the movement of overlying strata in different goaf areas in "vertical three zones", Strain, porosity and permeability models are established respectively. The permeability of rock strata in caving zone (mainly pore development), fracture zone and bending subsidence zone (mainly crack development) can be calculated separately. (3) the engineering background is 8133 face of Yang-coal No. 5 Mine. The theoretical results of the above models are compared with the surface subsidence observation and the 3DEC numerical simulation, respectively. The results show that the calculated results of the established numerical model are in good agreement with the measured ones, and at the same time, The simulation results show that the final development height of caving zone is 57.3 m, and the calculation result of strata movement model is 55.87 m.The deviation between them is relatively small. (4) the overburden rock of No. 8133 face of No. 8133 coal mine is affected by the developed strain-porosity permeability model. The change of permeability distribution is calculated. The results show that the strata near 55.87m above the goaf are affected by mining movement, the fractures are more developed, and the permeability changes greatly. Combined with the demand of gas treatment in coal mine, the optimization scheme of height design of high drainage roadway is put forward, which has a good effect on gas drainage in working face in actual engineering effect. The amount of gas drainage in high drainage roadway accounts for more than 96.76% of the total amount of gas drainage in working face. In this paper, a set of zonal calculation model of strata movement and the corresponding model of strain, porosity and permeability of strata are established. The reliability of the model is verified by field observation, simulation and analysis, and some engineering results are obtained. The results show that the theoretical results have good reliability and practicability. Through the research in this paper, the strata movement model and the strain-porosity permeability calculation model established for mining overburden rock are not only beneficial to underground gas drainage, but also can be further applied to control formation water gushing. Design surface water conservation mining plan, etc.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD325;TD712.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Yang Renshu;Li Yongliang;Guo Dongming;Yao Lan;Yang Tongmao;Li Taotao;;Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine[J];International Journal of Mining Science and Technology;2017年02期
2 王娜;徐素寧;周家晶;;基于DInSAR技術(shù)的煤礦區(qū)地面沉陷分析[J];中國地質(zhì)災(zāi)害與防治學(xué)報(bào);2016年02期
3 A.M.Suchowerska Iwanec;J.P.Carter;J.P.Hambleton;;Geomechanics of subsidence above single and multi-seam coal mining[J];Journal of Rock Mechanics and Geotechnical Engineering;2016年03期
4 王鵬;余學(xué)義;劉俊;;淺埋煤層大采高開采地表裂縫破壞機(jī)理研究[J];煤炭工程;2014年05期
5 景成;宋子齊;蒲春生;龐玉東;田新;周游;蒲綏利;;基于巖石物理相分類確定致密氣儲層滲透率——以蘇里格東區(qū)致密氣儲層滲透率研究為例[J];地球物理學(xué)進(jìn)展;2013年06期
6 Liu Hongtao;Ma Nianjie;Ma Wang;Ren Guoqiang;;Evolution and distribution of macroscopic gas channels in an overburden strata[J];International Journal of Mining Science and Technology;2012年06期
7 劉文靜;屈曉榮;楊棟;朱少杰;;大埋深條件下地表沉陷規(guī)律相似模擬研究[J];山西煤炭;2012年02期
8 劉純貴;;馬脊梁煤礦淺埋煤層開采覆巖活動規(guī)律的相似模擬[J];煤炭學(xué)報(bào);2011年01期
9 許家林;連國明;朱衛(wèi)兵;錢鳴高;;深部開采覆巖關(guān)鍵層對地表沉陷的影響[J];煤炭學(xué)報(bào);2007年07期
10 郁鐘銘,李奕檣;煤礦井工開采技術(shù)現(xiàn)狀問題及發(fā)展[J];中國礦業(yè);2005年09期
相關(guān)會議論文 前1條
1 徐楊青;吳西臣;;FLAC~(3D)在露天轉(zhuǎn)井工開采條件下地表沉陷預(yù)測及邊坡穩(wěn)定性分析中的應(yīng)用[A];工程地質(zhì)力學(xué)創(chuàng)新與發(fā)展暨工程地質(zhì)研究室成立50周年學(xué)術(shù)研討會論文集[C];2008年
相關(guān)博士學(xué)位論文 前2條
1 張傲;廣西合山煤礦采空塌陷風(fēng)險(xiǎn)評價(jià)[D];中國地質(zhì)大學(xué);2015年
2 宋世杰;基于關(guān)鍵地礦因子的開采沉陷分層傳遞預(yù)計(jì)方法研究[D];西安科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前3條
1 段偉;地表沉陷時間序列分析與預(yù)測[D];山東科技大學(xué);2008年
2 王彥東;巖質(zhì)高邊坡關(guān)鍵塊體的確定及穩(wěn)定性評價(jià)研究[D];成都理工大學(xué);2007年
3 張興華;綜采工作面采空區(qū)瓦斯運(yùn)移規(guī)律及其應(yīng)用[D];遼寧工程技術(shù)大學(xué);2002年
,本文編號:2112199
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2112199.html