瓦斯無(wú)線(xiàn)監(jiān)測(cè)網(wǎng)絡(luò)低功耗傳感節(jié)點(diǎn)的研究
本文選題:無(wú)線(xiàn)傳感器節(jié)點(diǎn) + 低功耗 ; 參考:《東華大學(xué)》2014年碩士論文
【摘要】:瓦斯事故一直是煤礦安全生產(chǎn)的主要威脅。雖然近些年來(lái),瓦斯監(jiān)測(cè)技術(shù)不斷發(fā)展,但瓦斯爆炸事件仍頻頻發(fā)生。將無(wú)線(xiàn)傳感器網(wǎng)絡(luò)應(yīng)用于井下采煤工作面等處的瓦斯?jié)舛缺O(jiān)測(cè),與現(xiàn)有有線(xiàn)網(wǎng)絡(luò)相結(jié)合,則能夠更為全面地監(jiān)測(cè)瓦斯?jié)舛。但傳統(tǒng)低功耗瓦斯傳感元件的功耗很大,嚴(yán)重限制了無(wú)線(xiàn)瓦斯傳感器節(jié)點(diǎn)的工作壽命。因此如何降低無(wú)線(xiàn)瓦斯傳感器節(jié)點(diǎn)的能耗是迫切需要解決的問(wèn)題。 低功耗瓦斯傳感器節(jié)點(diǎn)的設(shè)計(jì)需要從硬件和軟件兩個(gè)方面進(jìn)行研究。在硬件設(shè)計(jì)方面,本文首先對(duì)比了低功耗的瓦斯傳感元件和無(wú)線(xiàn)收發(fā)器件。MIPEX傳感元件是俄羅斯OPTOSENSE公司最新推出的一款低功耗紅外瓦斯傳感器,其功耗遠(yuǎn)低于傳統(tǒng)瓦斯傳感元件。然后選擇了瓦斯傳感元件MIPEX.穩(wěn)壓器件MH5333和CC2430無(wú)線(xiàn)收發(fā)器件,設(shè)計(jì)了低功耗硬件節(jié)點(diǎn)電路。由CC2430的P1.0管腳控制MIPEX傳感元件的電源。當(dāng)不需要采集數(shù)據(jù)時(shí),P1.O輸出低電平,關(guān)閉MIPEX以降低能耗。 在軟件設(shè)計(jì)方面,將軟件程序歸納為頂層模塊、數(shù)據(jù)采集模塊、無(wú)線(xiàn)通信模塊和低功耗模塊,并完成了各個(gè)模塊的具體程序設(shè)計(jì)。在頂層模塊中,設(shè)置傳感器節(jié)點(diǎn)處于工作/休眠的交替狀態(tài),其工作周期為10分鐘。由于傳感器節(jié)點(diǎn)采集和發(fā)送數(shù)據(jù)的時(shí)間非常短暫,因此節(jié)點(diǎn)在一個(gè)周期的絕大部分時(shí)間里都是處于休眠狀態(tài),有利于降低節(jié)點(diǎn)能耗。采用4個(gè)傳感器節(jié)點(diǎn)和一個(gè)協(xié)調(diào)器節(jié)點(diǎn)構(gòu)建了一個(gè)星型網(wǎng)絡(luò),驗(yàn)證了無(wú)線(xiàn)通信模塊和串口通信程序。由于軟件設(shè)計(jì)是在ZigBee協(xié)議棧中進(jìn)行的,所以第二章介紹了Zigbee技術(shù)及其協(xié)議棧。 然后從理論上估計(jì)了節(jié)點(diǎn)的能耗。采用4節(jié)AA電池,估計(jì)出節(jié)點(diǎn)的工作時(shí)間為260天。又針對(duì)MIPEX傳感元件電源不受控的情況下CC2430休眠與不休眠兩種方案,分析了節(jié)點(diǎn)能耗,估計(jì)出其工作時(shí)間約為4天和70天。可見(jiàn)采用休眠機(jī)制可顯著延長(zhǎng)節(jié)點(diǎn)工作時(shí)間。最后又分析了采用TP-1.1A傳感元件的節(jié)點(diǎn)的功耗,在6節(jié)AA電池供電和CC2430采取休眠機(jī)制的情況下其工作時(shí)間不足4天。可見(jiàn),傳統(tǒng)瓦斯傳感元件低功耗性能遠(yuǎn)不如MIPEX。 最后分析了存在的問(wèn)題,并提出了進(jìn)一步研究的思路。
[Abstract]:Gas accident has always been the main threat to coal mine safety production. Although gas monitoring technology has been developing in recent years, gas explosion still occurs frequently. When the wireless sensor network is applied to the monitoring of gas concentration in the underground coal mining face and so on, the gas concentration can be monitored more comprehensively by combining it with the existing wired network. However, the low power consumption of the traditional gas sensor is very high, which seriously limits the working life of the wireless gas sensor node. Therefore, how to reduce the energy consumption of wireless gas sensor nodes is an urgent problem to be solved. The design of low power gas sensor nodes needs to be studied from two aspects: hardware and software. In the aspect of hardware design, this paper first compares the low power consumption gas sensor and wireless transceiver. MIPEX sensor is a new low power infrared gas sensor developed by OPTOSENSE Company of Russia, and its power consumption is much lower than that of traditional gas sensor. Then the gas sensing element MIPEX. Voltage regulator MH5333 and CC2430 wireless transceiver, low power hardware node circuit is designed. The power supply of MIPEX sensor element is controlled by P1.0 pin of CC2430. When there is no need to collect data, P 1. O output low level, turn off MIPEX to reduce energy consumption. In the aspect of software design, the software program is divided into top-level module, data acquisition module, wireless communication module and low-power module, and the specific program design of each module is completed. In the top-level module, the sensor node is set to work / hibernate alternately, its working period is 10 minutes. Because the time of collecting and sending data is very short, the sensor nodes are dormant for most of the time in one cycle, which is helpful to reduce the energy consumption of the nodes. A star network is constructed by using four sensor nodes and a coordinator node to verify the wireless communication module and serial communication program. Since the software design is carried out in the ZigBee protocol stack, the second chapter introduces Zigbee technology and its protocol stack. Then the energy consumption of nodes is estimated theoretically. With 4 AA batteries, the working time of the node is estimated to be 260 days. In view of the two schemes of CC2430 sleep and non-dormancy under the condition that the power supply of MIPEX sensor element is not controlled, the energy consumption of the node is analyzed, and the working time is estimated to be about 4 days and 70 days. It can be seen that the sleep mechanism can significantly prolong the working time of the nodes. Finally, the power consumption of the node with TP-1.1A sensor element is analyzed. The power consumption of the node is less than 4 days with 6 AA batteries and CC2430 with sleep mechanism. It can be seen that the low power consumption performance of traditional gas sensor is much lower than that of MIPEX. Finally, the existing problems are analyzed, and further research ideas are put forward.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TD76;TN92
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周邦全;;煤礦安全監(jiān)測(cè)監(jiān)控系統(tǒng)的發(fā)展歷程和趨勢(shì)[J];礦業(yè)安全與環(huán)保;2007年S1期
2 江福椿,朱昌平,趙帥;超聲技術(shù)在氣體濃度檢測(cè)中的應(yīng)用[J];河海大學(xué)常州分校學(xué)報(bào);2005年02期
3 李文江;魏娟;;ZigBee無(wú)線(xiàn)傳感器網(wǎng)絡(luò)在瓦斯監(jiān)控系統(tǒng)中的應(yīng)用[J];黑龍江科技學(xué)院學(xué)報(bào);2008年06期
4 李 虹;監(jiān)測(cè)甲烷濃度的紅外光吸收法光纖傳感器[J];量子電子學(xué)報(bào);2002年04期
5 謝寶衛(wèi),李國(guó)斌;催化燃燒型瓦斯檢測(cè)儀器性能特征及影響因素淺析[J];煤礦安全;2002年03期
6 唐印偉;張海洋;;一種基于Zigbee的適用于煤礦井下無(wú)線(xiàn)傳感的路由協(xié)議研究[J];煤礦機(jī)械;2010年03期
7 韓忠;王璐;周中闊;;基于Zigbee的礦井綜采面無(wú)線(xiàn)傳感器網(wǎng)絡(luò)監(jiān)測(cè)系統(tǒng)設(shè)計(jì)[J];煤礦機(jī)械;2012年01期
8 雷霖;董華莉;;基于ZigBee協(xié)議的煤礦瓦斯和溫濕度監(jiān)測(cè)節(jié)點(diǎn)設(shè)計(jì)[J];工礦自動(dòng)化;2011年01期
9 劉國(guó)華,杜忻銳;半導(dǎo)體氣敏傳感器的原理及應(yīng)用[J];煤炭技術(shù);2001年09期
10 陳斯;趙同彬;高建東;楊增汪;游春霞;;基于ZigBee PRO的礦井瓦斯無(wú)線(xiàn)監(jiān)測(cè)系統(tǒng)[J];煤炭技術(shù);2011年09期
相關(guān)博士學(xué)位論文 前1條
1 王泉夫;基于WSN的工作面監(jiān)控及瓦斯?jié)舛阮A(yù)測(cè)關(guān)鍵技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2009年
,本文編號(hào):2050633
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2050633.html