礦用可移動(dòng)救生艙優(yōu)化設(shè)計(jì)
本文選題:礦用救生艙 + 頻譜分析; 參考:《北京理工大學(xué)》2015年碩士論文
【摘要】:礦用可移動(dòng)救生艙是在礦難發(fā)生時(shí),為無(wú)法及時(shí)撤離的人員提供緊急避難空間的一種應(yīng)急設(shè)備,救生艙必須具有足夠的強(qiáng)度以抵抗瓦斯爆炸產(chǎn)生的高強(qiáng)度沖擊波的作用。通常設(shè)計(jì)救生艙時(shí),設(shè)計(jì)人員都是根據(jù)經(jīng)驗(yàn)來(lái)布置加強(qiáng)筋,一般都是在原有救生艙結(jié)構(gòu)下,通過(guò)增加構(gòu)件的厚度來(lái)達(dá)到所要求的強(qiáng)度,這種方法即不合理又不經(jīng)濟(jì)。本文運(yùn)用Ls-Dyna及Optistruct對(duì)救生艙進(jìn)行了強(qiáng)度分析及結(jié)構(gòu)優(yōu)化,以尋求最優(yōu)的結(jié)構(gòu)布局,主要完成了以下幾個(gè)方面的工作: (1)在Autodyn中建立瓦斯爆炸數(shù)值模型,模擬瓦斯爆炸時(shí)沖擊波在巷道中的傳播過(guò)程,獲取救生艙各個(gè)部位相應(yīng)的壓力曲線,然后運(yùn)用Matlab對(duì)超壓曲線進(jìn)行頻譜分析,獲取爆炸沖擊波的頻率成分和各頻率分量大小。 (2)本文以KJYF-96/10礦用可移動(dòng)救生艙為基準(zhǔn)模型,運(yùn)用Pro/e建立救生艙三維實(shí)體模型,并在HyperMesh中建立礦用可移動(dòng)救生艙有限元模型。 (3)在Hypermesh中建立了三種不同約束方式的救生艙有限元模型,,運(yùn)用Optistruct對(duì)這三種不同約束條件下的救生艙模型進(jìn)行模態(tài)分析,用以尋求最合理的約束方式;然后運(yùn)用Ls-Dyna計(jì)算救生艙的強(qiáng)度,獲得救生艙在爆炸沖擊波作用下不同時(shí)刻的位移云圖和應(yīng)力云圖,依據(jù)礦用可移動(dòng)救生艙通用技術(shù)要求,驗(yàn)證救生艙結(jié)構(gòu)的安全性。 (4)在有限元分析的基礎(chǔ)上,引入拓?fù)鋬?yōu)化的方法對(duì)救生艙艙體進(jìn)行拓?fù)鋬?yōu)化,得出結(jié)構(gòu)的最佳傳力路徑,為救生艙的改進(jìn)設(shè)計(jì)和結(jié)構(gòu)輕量化提出了參考依據(jù)。首先運(yùn)用Optistruct對(duì)單節(jié)救生艙和救生艙前后端面進(jìn)行拓?fù)鋬?yōu)化,獲得單節(jié)救生艙和救生艙前后端面拓?fù)涿芏仍茍D;然后根據(jù)拓?fù)鋬?yōu)化結(jié)果,對(duì)單節(jié)救生艙艙段和救生艙前后端面的加強(qiáng)筋進(jìn)行重新布局;最后將新設(shè)計(jì)各結(jié)構(gòu)組裝在一起,對(duì)新組裝救生艙進(jìn)行強(qiáng)度計(jì)算,驗(yàn)證新設(shè)計(jì)的救生艙結(jié)構(gòu)強(qiáng)度。優(yōu)化后的救生艙強(qiáng)度滿足要求,質(zhì)量減少了2.99噸,節(jié)約生產(chǎn)成本和運(yùn)輸成本,提高了經(jīng)濟(jì)效益。
[Abstract]:Mine movable lifebuoy is a kind of emergency equipment which can provide emergency shelter for people unable to evacuate in time in the event of mine accident. It must have sufficient strength to resist the high intensity shock wave caused by gas explosion. When designing lifebuoys, the designers usually arrange stiffeners according to experience, and generally achieve the required strength by increasing the thickness of the components under the original lifebuoy structure. This method is unreasonable and uneconomical. In this paper, Ls-Dyna and Optistruct are used to analyze the strength and optimize the structure of the lifebuoy in order to find the optimal structure layout. The main work is as follows: 1) the numerical model of gas explosion is established in Autodyn. In order to simulate the propagation process of shock wave in roadway during gas explosion, the corresponding pressure curve of every part of lifebuoy is obtained, and then the spectrum analysis of overpressure curve is carried out with Matlab. The frequency components and frequency components of the explosion shock wave are obtained. (2) in this paper, using the KJYF-96 / 10 mine movable lifebuoy as the reference model, the three-dimensional solid model of the lifebuoy is established by using Pro-e. The finite element model of mine movable lifebuoy is established in HyperMesh. The finite element model of three different restraint modes is established in HyperMesh. The modal analysis of the three lifebuoy models under different constraint conditions is carried out by Optistruct. Then Ls-Dyna is used to calculate the strength of the capsule, and the displacement cloud diagram and stress cloud diagram of the capsule at different times under the action of explosion shock wave are obtained, according to the general technical requirements of mine movable lifebuoy cabin, Verify the safety of the lifebuoy structure. (4) based on the finite element analysis, the topological optimization method is introduced to optimize the lifebuoy cabin, and the optimal load transfer path of the structure is obtained. It provides a reference for the improved design and lightweight structure of the lifebuoy. In this paper, we first use Optistruct to optimize the topology of the single lifebuoy and the front and rear surfaces of the lifebuoy, and obtain the topological density cloud diagram of the single lifebuoy and the front and rear surfaces of the lifebuoy, and then according to the topology optimization results, At last, the new structure is assembled together to calculate the strength of the newly designed lifebuoy to verify the strength of the newly designed lifebuoy. After optimization, the strength of the lifebuoy meets the requirement, the quality is reduced by 2.99 tons, the production cost and transportation cost are saved, and the economic benefit is improved.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD774
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 樊小濤;;礦用救生艙抗爆性能試驗(yàn)研究[J];礦業(yè)安全與環(huán)保;2010年03期
2 張德恒;鹿曉陽(yáng);;結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)的理論與方法[J];化學(xué)工程與裝備;2011年01期
3 梅瑞斌;李長(zhǎng)生;蔡般;劉相華;;爆炸沖擊下煤礦救生艙抗爆能力有限元分析[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
4 于文華;張亞棟;;爆炸沖擊波在坑道內(nèi)傳播規(guī)律研究[J];爆破器材;2013年03期
5 艾長(zhǎng)波;;礦用救生艙國(guó)內(nèi)外發(fā)展概況[J];艦船防化;2010年06期
6 范江東;靳宇暉;;礦用救生艙的初步研究[J];機(jī)械管理開(kāi)發(fā);2012年02期
7 郭中澤;張衛(wèi)紅;陳裕澤;;結(jié)構(gòu)拓?fù)鋬?yōu)化設(shè)計(jì)綜述[J];機(jī)械設(shè)計(jì);2007年08期
8 王長(zhǎng)江;胡元;梁允魁;;基于LS-DYNA礦用救生艙抗爆性能的仿真分析[J];科技視界;2012年01期
9 王東武;杜春志;;巷道瓦斯爆炸傳播規(guī)律的試驗(yàn)研究[J];采礦與安全工程學(xué)報(bào);2009年04期
10 ;美國(guó)應(yīng)急救生艙的設(shè)計(jì)與應(yīng)用[J];勞動(dòng)保護(hù);2011年01期
相關(guān)博士學(xué)位論文 前2條
1 方海峰;煤礦井下救生艙及硐室防護(hù)結(jié)構(gòu)動(dòng)力學(xué)研究[D];中國(guó)礦業(yè)大學(xué);2012年
2 李長(zhǎng)錄;煤礦井下緊急避險(xiǎn)關(guān)鍵裝備的數(shù)值模擬分析與研制[D];中國(guó)礦業(yè)大學(xué)(北京);2013年
本文編號(hào):2035617
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2035617.html