靜態(tài)破碎法在高瓦斯礦井巷道端頭頂板控制垮落中的應用研究
發(fā)布時間:2018-06-16 02:09
本文選題:高瓦斯礦井 + 靜態(tài)破碎; 參考:《太原理工大學》2014年碩士論文
【摘要】:頂板堅硬程度、支護方式與強度、上覆巖層移動規(guī)律等因素影響著回采工作面端頭弧形三角區(qū)頂板的懸頂距離,過大的懸頂距離會導致該區(qū)域瓦斯?jié)舛瘸?同時引起其它方面的問題,特別是高瓦斯礦井,弧形三角區(qū)懸頂問題已經(jīng)成為亟需解決的難點問題。 本文探討了處理懸頂問題的兩種主要方法:預裂爆破和水壓致裂,對比這兩種技術(shù)方法的優(yōu)缺點及適用條件;結(jié)合陽煤集團三礦回采工作面端頭弧形三角區(qū)頂板的懸頂情況,得出預裂爆破和水壓致裂不適合高瓦斯礦井處理懸頂?shù)慕Y(jié)論。本文引入“靜態(tài)破碎技術(shù)”處理高瓦斯礦井工作面端頭的懸頂?shù)臉?gòu)想,實現(xiàn)對弧形三角區(qū)頂板安全、高效、環(huán)保的控制垮落過程。 通過理論分析+實驗研究+現(xiàn)場工業(yè)性試驗相結(jié)合的方法,分析了回采巷道端頭弧形三角區(qū)形成條件及對周圍煤柱的影響,并計算了弧形三角區(qū)懸頂?shù)淖畲缶嚯x,通過對K8113工作面的鉆孔窺視,了解了工作面上覆巖層移動情況;研究了靜態(tài)破碎技術(shù)破巖機理,完成了靜態(tài)破碎劑的物理化學參數(shù)測定,包括:密度、容重、膨脹壓力、與水混合密度、反應放熱量,以及膨脹壓力與孔徑關(guān)系、最佳水灰比等重要參數(shù)的測定;實驗室內(nèi)得出了靜態(tài)破碎過程中巖體內(nèi)裂紋產(chǎn)生形式;利用聲發(fā)射定位技術(shù),監(jiān)測了裂紋擴展的全過程,得出了“裂紋擴展先從孔中下部孔壁開始”、“先發(fā)生裂紋先于后發(fā)生裂紋擴展”、“裂紋擴展速度先快后慢”、“垂直層理方向裂紋拓展速度大于平行層理方向裂紋拓展速度”等重要結(jié)論;依據(jù)彈性力學與裂紋力學理論,分析靜態(tài)破碎劑破巖過程中鉆孔周圍裂紋起裂、擴展及止裂過程,建立了靜態(tài)破碎裂紋擴展模型,結(jié)果顯示:靜態(tài)破碎劑的作用力及裂紋擴展長度的關(guān)系,及裂紋擴展半徑;為了進一步確定破碎劑作用的機理以及合適的鉆孔布置參數(shù),通過大型有限元軟件ANSYS4.0對煤體脹裂過程的效果進行模擬,得出鉆孔理想間排距應小于0.8m;設計了合理的鉆孔參數(shù),然后在K8113工作面回風巷端頭實施了靜態(tài)破碎人工強制放頂技術(shù),獲得了理想的試驗效果。 K8113工作面退錨、剪網(wǎng)都達到要求后,沒有經(jīng)過懸頂處理的落山懸頂長度一般在20m以上。本研究工業(yè)性試驗進行數(shù)小時后,當機頭向前推進3.2m后,落山巷道頂煤開始逐步冒落,老頂石灰?guī)r也逐步開始垮落;又推進約9.6m后,試驗區(qū)域已完全垮落。未處理懸頂時和注漿處理相比,懸頂距離減少了7.2m。 本研究的實施,避免了高瓦斯礦井回采巷道端頭懸頂帶來的通風死角和采空區(qū)漏風等安全問題,同時降低了切眼處和采空區(qū)兩側(cè)煤柱的支承壓力,驗證了靜態(tài)破碎技術(shù)適用于高瓦斯礦井人工強制放頂?shù)慕Y(jié)論。該研究成果在陽煤集團具有重要的推廣價值,同時為其他礦區(qū)處理類似問題提供了實際參考,是很有意義的。
[Abstract]:The roof hardness, support mode and strength, the law of overlying strata movement and other factors affect the roof suspension distance of the arc triangle area of the end of the mining face, and the excessive hanging roof distance will cause the gas concentration in this area to exceed the limit. At the same time, it has become a difficult problem to solve the problems in other aspects, especially in high gas mine, arc triangle area suspended roof problem. This paper discusses two main methods to deal with the problem of suspended roof: presplit blasting and hydraulic fracturing, compares the advantages and disadvantages of these two technical methods and their applicable conditions, and combines with the suspended roof of the end arc triangle area of the coal mining face of Yangyang Coal Group Group No. 3 Coal Mine. It is concluded that presplit blasting and hydraulic fracturing are not suitable for roof suspension treatment in high gas mines. In this paper, the concept of "static crushing technology" is introduced to deal with the suspended roof at the end of high gas mine face, which can control the collapse process of arc triangle roof safely, efficiently and environmentally. By means of theoretical analysis and experiment, the formation conditions of arc triangle at the end of mining roadway and its influence on the surrounding coal pillar are analyzed, and the maximum distance of suspended roof of arc triangle area is calculated. By peeping through the boreholes of K8113 working face, the movement of overlying strata is understood, the mechanism of rock breaking by static crushing technology is studied, and the physical and chemical parameters of static crushing agent are determined, including density, bulk density, expansion pressure, etc. Measurement of important parameters such as mixing density with water, heat release from reaction, relationship between expansion pressure and pore size, optimum water-cement ratio and other important parameters; formation of cracks in rock body during static crushing in laboratory; use of acoustic emission localization technology, The whole process of crack growth is monitored, and it is concluded that "crack propagation begins with the hole wall of the middle and lower part of the hole", "the crack first occurs before the crack growth", and "the crack growth rate is first fast and then slow". According to the theory of elastic mechanics and crack mechanics, the crack initiation, propagation and crack stopping process around the borehole during the rock breaking process of static fracturing agent are analyzed, such as "the crack expansion speed in the vertical bedding direction is faster than the crack expansion velocity in the parallel bedding direction", and so on. The static crack propagation model is established. The results show that the relationship between the force of static crushing agent and the length of crack propagation, and the radius of crack propagation, in order to determine the mechanism of the effect of the agent and the appropriate drilling parameters, By simulating the effect of expanding and cracking process of coal body by ANSYS 4.0, it is concluded that the ideal spacing between boreholes should be less than 0.8 m.The reasonable drilling parameters are designed. Then the static crushing artificial forced caving technology is implemented at the end of return air roadway of K8113 face, and the ideal test result is obtained. The length of the downhill suspended roof is generally more than 20m. After a few hours of industrial test, the roof coal of the downhill roadway began to fall gradually, and the limestone of the main roof began to collapse gradually after the machine head was pushed forward 3.2 m, and the test area had completely collapsed after advancing about 9.6 m. Compared with the grouting treatment, the suspended roof distance decreases by 7.2 mm. when the suspended roof is untreated. The implementation of this study avoids the safety problems of ventilation dead angle and air leakage in goaf caused by the hanging roof of the end of mining roadway in high gas mine, and at the same time reduces the supporting pressure of coal pillar at the cutting hole and both sides of the goaf. The conclusion that static crushing technology is suitable for artificial forced roof caving in high gas mine is verified. The results of this study are of great value to be popularized in Yang Coal Group, and also provide practical reference for other mining areas to deal with similar problems, which is of great significance.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TD712;TD327.2
【參考文獻】
相關(guān)期刊論文 前10條
1 王光金;;靜態(tài)爆破技術(shù)在橋梁施工中的應用[J];安徽建筑;2007年02期
2 秦本東;門玉明;諶倫建;何軍;;高溫下石灰?guī)r膨脹特性和力學特性的試驗研究[J];防災減災工程學報;2009年06期
3 吳興榮,郭海泉,黃修典,井勝泉;堅硬頂板沖擊礦壓的預測與防治[J];礦山壓力與頂板管理;1999年Z1期
4 楊培舉;劉長友;;綜放面端頭基本頂結(jié)構(gòu)與合理支護參數(shù)[J];采礦與安全工程學報;2012年01期
5 齊明勝,李化敏,孫玉寧;回采巷道錨索拆除前后狀態(tài)分析及索具拆除技術(shù)[J];煤炭工程;2003年06期
6 秦樂堯,張連勇;綜放工作面端頭頂板結(jié)構(gòu)與穩(wěn)定性研究[J];煤礦現(xiàn)代化;2000年06期
7 何廷峻;工作面端頭懸頂在沿空巷道中破斷位置的預測[J];煤炭學報;2000年01期
8 閆少宏,寧宇,康立軍,史元偉,汪有剛,李穎飛;用水力壓裂處理堅硬頂板的機理及實驗研究[J];煤炭學報;2000年01期
9 郭德勇;商登瑩;呂鵬飛;王升宇;王金明;;深孔聚能爆破堅硬頂板弱化試驗研究[J];煤炭學報;2013年07期
10 黃輝;郝兵元;魏紅;;超細水泥防治孤島工作面煤壁片幫[J];金屬礦山;2014年02期
,本文編號:2024732
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/2024732.html
最近更新
教材專著