天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 安全工程論文 >

井下直接法測(cè)定煤層瓦斯壓力數(shù)值模擬研究及工程指導(dǎo)

發(fā)布時(shí)間:2018-05-23 12:19

  本文選題:直接法 + 煤層瓦斯壓力 ; 參考:《華北科技學(xué)院》2017年碩士論文


【摘要】:煤層瓦斯壓力作為礦井瓦斯最重要的基礎(chǔ)參數(shù)之一,其準(zhǔn)確測(cè)定對(duì)于防治瓦斯災(zāi)害、保證煤礦安全生產(chǎn)和鞏固煤炭能源基礎(chǔ)地位具有重要意義。通過對(duì)以前相關(guān)研究成果總結(jié)和分析,提出了一些研究?jī)?nèi)容作為補(bǔ)充和延伸。以瓦斯在煤層中流動(dòng)的物理模型、瓦斯在煤層中流動(dòng)的數(shù)學(xué)模型、多物理場(chǎng)耦合數(shù)值仿真軟件COMSOL Multiphysics作為橋梁,采用數(shù)值模擬手段開展了一些有益的探討,得出以下結(jié)論,并對(duì)現(xiàn)場(chǎng)測(cè)壓工作提供了一定的工程指導(dǎo)。(1)在一定的數(shù)學(xué)模型指導(dǎo)下,研究不同因素對(duì)瓦斯壓力平衡時(shí)間的影響規(guī)律,表明并不是鉆孔影響范圍越大,瓦斯壓力平衡時(shí)間越長(zhǎng),依具體情況而定。在鉆孔暴露時(shí)間、滲透率、孔隙率、鉆孔直徑相同的條件下,煤層原始瓦斯壓力越大,鉆孔影響范圍就越大,但是瓦斯壓力平衡時(shí)間并不會(huì)因此而增加;在鉆孔暴露時(shí)間、煤層原始瓦斯壓力、孔隙率、鉆孔直徑相同的條件下,煤層滲透率越大,鉆孔影響范圍越大,但是瓦斯壓力平衡時(shí)間并不會(huì)因此而增加;在煤層原始瓦斯壓力、滲透率、孔隙率、鉆孔直徑相同的條件下,鉆孔暴露時(shí)間越長(zhǎng),鉆孔影響范圍越大,瓦斯壓力平衡時(shí)間越長(zhǎng),驗(yàn)證了前人的結(jié)論;在煤層原始瓦斯壓力、滲透率、孔隙率、鉆孔暴露時(shí)間相同的條件下,鉆孔直徑越大,鉆孔影響范圍越大,瓦斯壓力平衡時(shí)間越長(zhǎng)。(2)考慮滑脫效應(yīng)以后,在封孔生效階段,隨著鉆孔暴露時(shí)間的增加,鉆孔周圍處任意一點(diǎn)處的瓦斯?jié)B透率都在增加,并且隨著距鉆孔壁的距離增加,這種增加效應(yīng)逐漸減小甚至沒有。因此在一定條件下,考慮滑脫效應(yīng)時(shí),封孔過程中鉆孔周邊任意一點(diǎn)處的煤層瓦斯壓力值比不考慮滑脫效應(yīng)的煤層瓦斯壓力值低,表明在封孔過程中滑脫效應(yīng)的存在不利于測(cè)壓;在封孔后壓力恢復(fù)階段,由于滑脫效應(yīng)的存在,使得煤層滲透率始終大于煤層初始滲透率,瓦斯更易在煤層中流動(dòng)。這也間接表明在封孔之后滑脫效應(yīng)的存在有利于瓦斯壓力恢復(fù)。(3)考慮煤與瓦斯流固耦合以后,封孔生效前鉆孔周邊任意一點(diǎn)的瓦斯壓力值比非耦合模型的瓦斯壓力值高,即煤與瓦斯的耦合作用減小了鉆孔周圍的煤層瓦斯壓力損失,但隨著封孔時(shí)間的增大,耦合模型與非耦合模型的瓦斯壓力值相差不大,這種優(yōu)勢(shì)將減小;傳統(tǒng)的單場(chǎng)分析只能考慮封孔生效階段內(nèi)在鉆孔周圍形成的壓降漏斗,但是考慮煤與瓦斯耦合作用之后,還會(huì)在鉆孔周圍形成煤層孔隙率和煤層滲透率漏斗,在封孔生效之前,隨著鉆孔暴露時(shí)間的增大,鉆孔周圍孔隙率和滲透率都不斷減小,并且這種減小速度會(huì)越來越慢;從使測(cè)壓鉆孔周邊的煤層孔隙率和滲透率降低的角度出發(fā),得出煤層埋藏深度越深,越不利于測(cè)壓;在封孔生效后的初始階段,瓦斯壓力上升速度較快,這也使得孔隙率和滲透率增加較快,很快接近煤層初始孔隙率和滲透率,又由于煤與瓦斯的耦合作用減小了鉆孔周圍的煤層瓦斯壓力損失,所以測(cè)壓時(shí)間比非耦合條件下的短。(4)突破傳統(tǒng)數(shù)值模擬分析的局限,分別建立了穿層鉆孔測(cè)壓模擬App、考慮滑脫效應(yīng)的穿層鉆孔測(cè)壓模擬App以及考慮煤與瓦斯耦合作用的順層鉆孔測(cè)壓模擬App,實(shí)現(xiàn)了快速仿真。(5)結(jié)合數(shù)值模擬結(jié)果和工程試驗(yàn)研究,對(duì)現(xiàn)場(chǎng)測(cè)壓工作提供了一定的工程指導(dǎo),為了減少測(cè)壓鉆孔暴露時(shí)間,一方面需要提高測(cè)壓人員的操作技能,提前備好封孔材料,以保證在見煤后及時(shí)封孔,另一方面可以選擇采用能夠較快封孔的技術(shù)和方法,比如黃泥-聚氨酯封孔法和膠囊-聚氨酯封孔法;測(cè)壓鉆孔直徑宜為65~95mm;可以采用封孔段大孔口配合測(cè)壓氣室小孔口測(cè)壓技術(shù),比如先按照《煤礦井下煤層瓦斯壓力的直接測(cè)定方法》(AQ/T 1047—2007)中要求的鉆孔直徑65~95mm開孔20m,然后從20m的位置一直到煤層采用小鉆頭來開孔等。
[Abstract]:Coal seam gas pressure is one of the most important basic parameters of mine gas, its accurate determination is of great significance for preventing gas disaster, ensuring coal mine safety production and consolidating coal energy basic status. By summarizing and analyzing the previous related research results, some research contents are put forward as supplement and extension. Gas is used in coal seam. The mathematical model of the flow in the medium, the mathematical model of gas flow in the coal seam, the multi physical field coupling numerical simulation software COMSOL Multiphysics as the bridge, using the numerical simulation method to carry out some useful discussions, draw the following conclusions, and provide a definite engineering guidance for the field pressure measurement work. (1) under the guidance of a certain mathematical model, The influence of different factors on the time of gas pressure balance shows that the greater the borehole influence range is, the longer the gas pressure balance time is, the more the borehole exposure time, permeability, porosity and borehole diameter are the same, the bigger the original gas pressure is, the larger the borehole influence range is, but the gas is bigger. The pressure balance time does not increase; under the conditions of the borehole exposure time, the coal seam original gas pressure, the porosity and the diameter of the borehole, the greater the permeability of the coal seam, the greater the influence range of the borehole, but the gas pressure balance time will not increase, and the original gas pressure, permeability, porosity and borehole diameter are the same in the coal layer. Under the condition of the longer exposure time, the greater the influence range of borehole and the longer the balance time of gas pressure, the longer the balance of gas pressure, the longer the pressure, the permeability, the porosity and the exposure time of the borehole are the same, the bigger the diameter of the borehole, the larger the borehole influence range, the longer the balance time of the gas pressure. (2) consideration of the slippage effect. In the future, the gas permeability at any point around the hole increases with the increase of the exposure time of the borehole, and with the increase of distance from the borehole wall, the effect of this increase gradually decreases or not. Therefore, under certain conditions, when the slipping effect is considered, any point around the hole around the hole is closed. The pressure value of coal seam gas is lower than that of coal seam gas pressure without taking off effect, which indicates that the existence of slipping effect is not conducive to pressure measurement in the process of sealing, and the coal seam permeability is always larger than the initial permeability of coal seam, and the gas is more easily flowing in the coal seam after sealing the hole, and the gas is more easily flowing in the coal seam. After the sealing of the hole, the existence of slippage effect is beneficial to the recovery of gas pressure. (3) considering the coupling of coal and gas flow, the value of gas pressure at any point around the borehole before the sealing is effective is higher than that of the non coupled model, that is, the coupling effect of coal and gas reduces the loss of gas pressure in the coal seam around the drilling hole, but with the sealing hole. With the increase of time, the difference of gas pressure between the coupling model and the non coupling model is small, and this advantage will be reduced. The traditional single field analysis can only consider the pressure drop funnel formed around the hole in the effective phase of the hole, but after the coupling of coal and gas, the porosity and permeability funnel of the coal seam can be formed around the drilling hole. Before the opening of the hole, the porosity and permeability around the borehole are decreasing with the increase of the exposure time, and this decrease speed will be more and more slow. From the angle of reducing the porosity and permeability of the coal seam surrounding the borehole, the deeper the depth of the coal seam is, the more unfavorable the pressure measurement. At the stage, the gas pressure rises faster, which also increases the porosity and permeability faster, quickly approaches the initial porosity and permeability of the coal seam, and reduces the loss of gas pressure in the coal seam around the borehole because of the coupling effect of coal and gas, so the time of pressure measurement is shorter than that under the non coupling condition. (4) breakthrough the traditional numerical simulation analysis. Limited, we have set up the simulation App of the penetrating hole pressure measurement, the simulation App of the drill hole and the simulation App considering the coupling effect of coal and gas, which consider the coupling effect of coal and gas. (5) combining the numerical simulation results and the engineering experiment research, it provides some engineering guidance for the current field pressure measurement work, in order to reduce the pressure. On the one hand, it is necessary to improve the operating skills of the manometer and prepare the sealing material in advance to ensure the timely sealing of the hole, and on the other hand, the technology and methods, such as the yellow mud polyurethane sealing method and the capsule - polyurethane sealing method, can be used to seal holes in time, and the diameter of the pressure drilling hole is 65~95mm. The small hole pressure measurement technology of the pressure chamber is used in combination with the opening of the hole and the hole. For example, the hole diameter 65~95mm required by the direct measurement method of the coal seam gas pressure in the coal mine (AQ/T 1047 - 2007) is used to open the hole 20m, and then from the position of the 20m to the coal seam to use a small bit to open the hole.
【學(xué)位授予單位】:華北科技學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD712.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊廣新;;中國煤炭消費(fèi)比重要降到58%以下[J];能源研究與利用;2017年01期

2 ;未來能源“結(jié)構(gòu)優(yōu)化”的新思路——全國人大代表、國家發(fā)展改革委副主任、國家能源局局長(zhǎng)努爾·白克力訪談錄[J];中國經(jīng)貿(mào)導(dǎo)刊;2016年09期

3 蔣云;朱天成;汪騰翔;;膠囊-聚氨酯聯(lián)合封孔測(cè)壓技術(shù)的研究與應(yīng)用[J];中國安全生產(chǎn)科學(xué)技術(shù);2015年07期

4 張淦星;楊勝強(qiáng);展勇;倫嘉云;趙歡歡;夏春波;;千米深井復(fù)雜地質(zhì)條件下煤層瓦斯壓力測(cè)定[J];礦業(yè)安全與環(huán)保;2015年03期

5 劉清泉;程遠(yuǎn)平;李偉;金侃;何濤;趙偉;;深部低透氣性首采層煤與瓦斯氣固耦合模型[J];巖石力學(xué)與工程學(xué)報(bào);2015年S1期

6 任培良;王云剛;;煤層鉆孔瓦斯抽采半徑數(shù)值模擬[J];科技創(chuàng)新與應(yīng)用;2015年07期

7 岳高偉;岳基偉;許夢(mèng)飛;;煤層瓦斯?jié)B流過程中壓力分布的滑脫效應(yīng)[J];科技導(dǎo)報(bào);2015年02期

8 鄧奇根;王燕;劉明舉;魏俊杰;;2001~2013年全國煤礦事故統(tǒng)計(jì)分析及啟示[J];煤炭技術(shù);2014年09期

9 吳愛軍;王巧莉;;薛湖礦二_2煤順層鉆孔瓦斯抽放的數(shù)值模擬與分析[J];中國安全生產(chǎn)科學(xué)技術(shù);2014年06期

10 蔣承林;王智立;崔正中;李曉偉;;下行超深鉆孔快速測(cè)定煤層瓦斯壓力技術(shù)[J];中國煤炭;2014年05期

相關(guān)會(huì)議論文 前2條

1 張輝;高德利;于洋;王德桂;;考慮滑脫效應(yīng)的煤層氣開采三維非平衡吸附模型[A];2008年煤層氣學(xué)術(shù)研討會(huì)論文集[C];2008年

2 能源科學(xué)和技術(shù)綜合專題組;;2020年中國能源科學(xué)和技術(shù)發(fā)展研究[A];2020年中國科學(xué)和技術(shù)發(fā)展研究(上)[C];2004年

相關(guān)博士學(xué)位論文 前1條

1 肖曉春;滑脫效應(yīng)影響的低滲透儲(chǔ)層煤層氣運(yùn)移規(guī)律研究[D];遼寧工程技術(shù)大學(xué);2009年

相關(guān)碩士學(xué)位論文 前6條

1 王智立;煤層透氣性對(duì)主、被動(dòng)測(cè)壓法測(cè)壓結(jié)果的準(zhǔn)確性影響研究[D];中國礦業(yè)大學(xué);2014年

2 馬成龍;陽泉開元煤礦3#煤層瓦斯壓力實(shí)測(cè)與分布規(guī)律研究[D];中國礦業(yè)大學(xué);2014年

3 莫道平;含瓦斯煤流固耦合數(shù)學(xué)模型及其應(yīng)用[D];重慶大學(xué);2014年

4 李孟陽;鉆孔抽放瓦斯固氣耦合數(shù)值模擬研究[D];重慶大學(xué);2012年

5 陳小奎;煤層水力壓裂三相耦合數(shù)值模擬研究[D];安徽理工大學(xué);2008年

6 肖曉春;考慮深部影響的煤層氣滲流數(shù)值模擬研究[D];遼寧工程技術(shù)大學(xué);2005年

,

本文編號(hào):1924685

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1924685.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ba9e1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com