綜掘工作面粉塵運移規(guī)律與綜合降塵技術研究
本文選題:綜掘工作面 + 數(shù)值模擬 ; 參考:《安徽建筑大學》2017年碩士論文
【摘要】:隨著掘進工藝技術的進步,綜掘面粉塵產(chǎn)生量顯著增大。部分煤礦在無防塵措施的情況下,綜掘工作面的粉塵濃度達到500~1000 mg/m3,超過《煤礦安全規(guī)程》的最高允許濃度的幾十倍。粉塵不僅破壞生產(chǎn)設備的工作環(huán)境、加速機械磨損、降低作業(yè)人員的視覺能見度、增加事故發(fā)生率外,而且對職工的身體健康構成很大威脅,特別是呼吸性粉塵濃度的大幅上升使得塵肺病發(fā)生的幾率大增。所以,粉塵治理迫在眉睫。本文通過現(xiàn)場實測、理論分析以及數(shù)值模擬的方法研究綜掘面粉塵的運移規(guī)律。首先,對兗礦東灘煤礦1307軌順工作面粉塵濃度進行了現(xiàn)場實測,并實驗室分析了該工作面粉塵的分散度等顆粒特性。再者,基于氣固兩相流理論,采用k-e模型對工作面粉塵運移規(guī)律進行了Fluent數(shù)值模擬,結合風流流場圖及巷道內(nèi)濃度分布圖,對粉塵的運移規(guī)律進行了描述。最后,通過數(shù)值模擬技術得到該巷道模型在長壓短抽除塵方式下的最優(yōu)除塵工藝參數(shù)。本文設計的綜合降塵系統(tǒng)由綜掘機高壓噴霧降塵系統(tǒng)與可控大風量長壓短抽除塵系統(tǒng)組成:綜掘機高壓噴霧降塵系統(tǒng)采用G型噴嘴、噴霧壓力采用12MPa,噴霧裝置安裝在掘進機頭后方2.5m處;可控大風量長壓短抽除塵系統(tǒng)工藝參數(shù)與數(shù)值模擬得出結果保持一致(Lc=4m,Ly=16m,抽壓比=1.4)。并對該綜合降塵系統(tǒng)進行了工程應用。本文研究得出的主要結論如下:(1)東灘煤礦1307軌順工作面粉塵的粒徑主要分布在0~50mm之間,其中小于50mm的粉塵達到總量的98.8%,表明工作面粉塵中小顆粒粉塵占到了大多數(shù),人體吸入粉塵的可能性增加。(2)由粉塵運移規(guī)律的數(shù)值模擬可知:高濃度粉塵主要集中在距迎頭10米的范圍內(nèi),濃度最高可達到1500mg/m3以上,并隨著距離的增加,粉塵濃度逐漸減低;距離巷道底板近的高濃度粉塵區(qū)域要比遠處的要廣,擴散的距離也越遠;抽出風筒一側的的粉塵濃度要高于壓入風筒一側的濃度,迎頭處的粉塵濃度在X軸的反向較高;由底板處的粉塵濃度分布可以看出,壓入風筒一側的粉塵沉降距離比抽出風筒的沉降距離要長;粉塵濃度最高位置并不是在迎頭部位,而是在距離迎頭5m附近;從整個巷道內(nèi)粉塵的分布情況看出,30m后的粉塵運移達到穩(wěn)定,濃度保持在80mg/m3。(3)對該工作面的最適除塵工藝參數(shù)(抽、壓風筒距離及抽壓比)范圍進行了數(shù)值模擬,模擬結果表明在壓入風量為280m3/min時,壓入風筒距離工作面16m、抽出風筒距離工作面4m、抽壓比為1.4時,巷道內(nèi)粉塵濃度處于一個很低的水平。(4)對該綜合降塵系統(tǒng)進行工程應用后,生產(chǎn)時的總粉塵和呼吸性粉塵降塵效率均達96%以上,距迎頭5m(司機位置)和距迎頭15m處巷道內(nèi)的總粉塵濃度分別為7.5 mg/m3和4.7 mg/m3,呼吸性粉塵濃度分別為2.2 mg/m3和2.0 mg/m3,掘進工作面的作業(yè)環(huán)境得到了極大的改善。
[Abstract]:With the progress of tunneling technology, the dust production of fully mechanized face increases significantly. In some coal mines without dustproof measures, the dust concentration of fully mechanized working face reaches 500mg / m3, which is more than tens of times of the maximum allowable concentration of coal mine safety regulations. Dust not only destroys the working environment of production equipment, accelerates the wear of machinery, reduces the visual visibility of workers and increases the incidence of accidents, but also poses a great threat to the health of workers. In particular, a large increase in respiratory dust concentration increases the probability of pneumoconiosis. Therefore, dust control is imminent. In this paper, the field measurement, theoretical analysis and numerical simulation are used to study the migration law of flour dust in fully-mechanized digging. Firstly, the dust concentration of the 1307 track working face in Dongtan Coal Mine of Yankuang Coal Mine was measured on the spot, and the particle characteristics such as the dispersion of the dust in the working face were analyzed in the laboratory. Furthermore, based on the gas-solid two-phase flow theory, the Fluent numerical simulation of dust migration law is carried out by using k-e model, and the dust migration law is described by combining the air-flow field diagram and the distribution chart of concentration in roadway. Finally, the optimal process parameters of the tunnel model under the condition of long pressure and short dust extraction are obtained by numerical simulation. The integrated dust control system designed in this paper consists of a high pressure spray dust control system of a fully mechanized excavator and a controlled large air volume long pressure and short extraction system. The high pressure spray dust control system of a fully mechanized excavator adopts a G type nozzle. The spray pressure is 12 MPA, the spray device is installed at 2.5 m behind the head of the roadheader, and the process parameters of the controlled large air volume, long pressure, short extraction and dust removal system are consistent with the results of numerical simulation. The results are consistent with those obtained by numerical simulation. The pump pressure ratio is 1.4 m and the pump pressure ratio is 1.4 m. The project application of the integrated dust control system is also carried out. The main conclusions of this paper are as follows: (1) the particle size of dust in 1307 track working face of Dongtan Coal Mine is mainly distributed in the range of 0~50mm, in which the dust less than 50mm reaches 98.8% of the total amount, indicating that the dust of small particles accounts for most of the dust in the working face. The possibility of inhaling dust is increased. 2) from the numerical simulation of dust migration law, it can be seen that the concentration of high concentration dust is mainly within the range of 10 meters from head to head, the highest concentration can reach above 1500mg/m3, and with the increase of distance, the dust concentration decreases gradually; The area of high concentration dust near the floor of roadway is wider than that in the distance, and the distance of diffusion is wider, the dust concentration on the side of the air duct is higher than that on the side of the pressure tube, and the concentration of dust at the head is higher in the opposite direction of the X axis. From the dust concentration distribution at the bottom plate, it can be seen that the distance of dust deposition on one side of the air duct is longer than that of the extraction tube, and the highest dust concentration is not in the head-on position, but in the vicinity of 5 m from the head of the air tube. From the distribution of dust in the whole roadway, it is found that the dust migration is stable after 30 m, and the concentration is kept at 80 mg / m ~ (3. 3) the optimum parameters of dust removal (extraction, pressure tube distance and suction ratio) are numerically simulated. The simulation results show that the dust concentration in the roadway is at a very low level when the air volume is 280m3/min, the distance between the air pipe and the working face is 16m, the distance between the air tube and the working face is 4m, the ratio of suction pressure is 1.4, and the dust concentration in the roadway is at a very low level. The dedusting efficiency of total dust and respiratory dust in production is over 96%. The total dust concentration in the roadway is 7.5 mg/m3 and 4.7 mg / m3, respectively, and the concentration of respiratory dust is 2.2 mg/m3 and 2.0 mg / m3, respectively. The working environment of the heading face has been greatly improved.
【學位授予單位】:安徽建筑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD714
【參考文獻】
相關期刊論文 前10條
1 郭明明;楊澤軍;;煤礦粉塵研究現(xiàn)狀[J];中州煤炭;2016年11期
2 戴春;;中國塵肺病群體救助模式分析[J];中國人力資源開發(fā);2016年01期
3 邵國君;周慶華;李啟月;洪昌壽;;鋁土礦巖巷綜掘工作面綜合防塵技術研究與應用[J];礦業(yè)研究與開發(fā);2015年10期
4 盧曉龍;;井下粉塵的產(chǎn)生機理分析與綜合生產(chǎn)環(huán)節(jié)治理技術[J];科技展望;2014年13期
5 郝秀峰;;淺談我國煤礦粉塵的危害與防塵措施[J];中小企業(yè)管理與科技(下旬刊);2014年02期
6 蒯念生;黃衛(wèi)星;袁旌杰;杜兵;李宗珊;伍毅;;點火能量對粉塵爆炸行為的影響[J];爆炸與沖擊;2012年04期
7 姚海飛;金龍哲;劉建;魏傳光;李杰男;;礦井粉塵分散度的測定及分析[J];煤礦安全;2010年05期
8 周茂普;;綜掘工作面通風除塵系統(tǒng)研發(fā)與應用[J];煤炭科學技術;2009年10期
9 張麗芳;;可燃粉塵爆炸下限濃度的測試研究[J];機械工程與自動化;2009年05期
10 王世平;;淺談煤礦井下生產(chǎn)性粉塵的危害及防治[J];資治文摘(管理版);2009年06期
相關博士學位論文 前1條
1 李雨成;基于風幕技術的綜掘面粉塵防治研究[D];遼寧工程技術大學;2010年
相關碩士學位論文 前7條
1 尹云波;長壓短抽式通風綜掘工作面粉塵運移規(guī)律研究[D];安徽建筑大學;2015年
2 金波;長距離掘巷前壓后抽混合式通風數(shù)值模擬研究[D];江西理工大學;2015年
3 馬輝猛;紡織廠粉塵分布的數(shù)值模擬與檢測方法的研究[D];武漢紡織大學;2014年
4 祝天姿;綜掘面機載風幕集塵除塵裝置研究[D];遼寧工程技術大學;2012年
5 劉亞力;綜掘工作面高壓噴霧降塵技術研究[D];西安科技大學;2010年
6 李鋒;基于FLUENT的硐室采場粉塵濃度分布規(guī)律模研究[D];青島理工大學;2010年
7 占驚春;基于SIMPLE算法的湍流場的計算機仿真[D];安徽大學;2007年
,本文編號:1921621
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1921621.html