煤礦通風瓦斯蓄熱氧化過程研究
本文選題:通風瓦斯 + 蓄熱氧化(逆流式熱氧化); 參考:《中國科學(xué)院研究生院(工程熱物理研究所)》2014年博士論文
【摘要】:甲烷是一種重要的溫室氣體來源,其排放量僅次于二氧化碳,溫室效應(yīng)是二氧化碳的二十多倍。有效的處理和利用煤礦通風甲烷,具有溫室氣體減排和節(jié)約能源的重要意義。目前通風瓦斯處理技術(shù)應(yīng)用最廣的是采用蓄熱氧化的方式實現(xiàn)低濃度甲烷的氧化處理。通風瓦斯蓄熱氧化過程的參數(shù)影響分析是這一技術(shù)走向應(yīng)用的基礎(chǔ)。然而,實驗規(guī)模和散熱等約束條件使得參數(shù)影響的研究范圍受到限制,實驗分析的結(jié)果也不具有普遍的適用性。同時,面對通風瓦斯蓄熱氧化裝置的設(shè)計需求,實驗和數(shù)值模擬研究難以滿足快速的工程設(shè)計需要,也難預(yù)測設(shè)計參數(shù)變化帶來的裝置穩(wěn)定運行范圍變化問題。針對以上兩方面的問題,本文對煤礦通風瓦斯蓄熱氧化過程開展了實驗、數(shù)值模擬和理論分析的研究,具體研究內(nèi)容和結(jié)果如下: 1.針對通風瓦斯蓄熱氧化過程的參數(shù)影響問題開展了無量綱化的實驗參數(shù)分析研究。建立了通風瓦斯蓄熱式熱氧化實驗系統(tǒng)以及低濃度甲烷氧化固定床反應(yīng)器,同時建立了實驗裝置中蓄熱式換熱過程的無量綱分析模型。提出低濃度甲烷在氧化裝置中氧化的基本條件,結(jié)合蓄熱式換熱過程的無量綱計算結(jié)果對實驗中各個參數(shù)的影響進行了分析,結(jié)果表明和無量綱時間相關(guān)的切換時間對裝置的影響較小,而與無量綱長度相關(guān)的氣流速度對裝置內(nèi)溫度分布的影響較大。 2.開展了通風瓦斯蓄熱式熱氧化裝置的一維模型化研究。建立了通風瓦斯蓄熱氧化裝置的一維計算模型。利用開源的Matmol程序,基于線法對通風瓦斯蓄熱氧化裝置的運行過程進行了模擬計算,模擬結(jié)果和實驗符合較好。計算結(jié)果表明,氧化裝置的蓄熱條件涉及氣流流速、甲烷濃度、蓄熱體結(jié)構(gòu)等諸多因素,是裝置能否穩(wěn)定運行的關(guān)鍵。流速的影響存在有多重影響的機制,這一多重影響機制會使得通風瓦斯蓄熱氧化裝置在實際運行中既有通風量的下限也有通風量的上限。 3.開展了通風瓦斯蓄熱式熱氧化裝置的三維建模研究;诙嗫捉橘|(zhì)的連續(xù)分布假設(shè),利用Fluent軟件的自定義標量方程等功能模塊建立了通風瓦斯蓄熱氧化過程的三維計算模型,利用這一計算模型研究了通風瓦斯蓄熱氧化裝置中流動分布、溫度分布等問題。計算結(jié)果表明,蜂窩蓄熱體區(qū)域的整流作用,使得工業(yè)裝置設(shè)計中兩端入口的結(jié)構(gòu)對裝置內(nèi)流動分布的影響很小。散熱會影響裝置內(nèi)的溫度分布甲烷轉(zhuǎn)化率,實驗結(jié)構(gòu)下的空腔有較小的氣流混合作用。由于氣流的滯留效應(yīng),裝置切換時間縮短會降低裝置的綜合甲烷轉(zhuǎn)化率,根據(jù)無量綱切換時間的計算,可以選擇裝置切換時間為60s-120s。 4.針對目前通風瓦斯蓄熱氧化裝置的設(shè)計需求,開展了基于蓄熱式換熱過程的蓄熱氧化裝置設(shè)計方法研究。提出一種蓄熱氧化裝置內(nèi)最低穩(wěn)定運行甲烷濃度的計算方法,并與部分實驗結(jié)果進行了比較驗證,計算模型的預(yù)測結(jié)果與實驗符合較好。基于這一方法進一步計算了裝置內(nèi)通風量范圍、蓄熱體的需求量等參數(shù)。計算結(jié)果表明裝置存在主要由散熱決定的通風量下限以及由蓄熱性能決定的通風量上限。煙氣分流計算結(jié)果和穩(wěn)定運行試驗運行結(jié)果表明,本文提出的設(shè)計方法可以用于工業(yè)裝置的設(shè)計。
[Abstract]:Methane is an important source of greenhouse gas, its emission is second to carbon dioxide, and the greenhouse effect is more than 20 times of carbon dioxide. It is of great significance to effectively deal with and utilize methane in coal mine. It is of great significance to reduce the emission of greenhouse gases and save energy. The oxidation treatment of low concentration methane. The parameter influence analysis of ventilation gas storage and oxidation process is the basis for the application of this technology. However, the experimental scale and heat dissipation restrict the scope of the study on the influence of the parameters, and the results of the experimental analysis are not universally applicable. At the same time, the heat storage and oxidation of ventilation gas is not available. The design requirements of the device, the experimental and numerical simulation research are difficult to meet the needs of the rapid engineering design, and it is difficult to predict the change of the stable operating range of the device caused by the change of the design parameters. In this paper, the experiment, numerical simulation and theoretical analysis of the coal mine ventilation gas storage and oxidation process are carried out in this paper, and the research on the numerical simulation and theoretical analysis is carried out. The content and results of the study are as follows:
1. the dimensionless experimental parameter analysis was carried out for the parameter influence of the ventilation and gas thermal storage oxidation process. A thermal oxidation experimental system of ventilation gas storage and a low concentration methane oxidation fixed bed reactor were established, and a non dimensional analysis model of the regenerative heat transfer process in the experimental device was established. The basic conditions for the oxidation of alkane in the oxidation unit are analyzed with the dimensionless calculation results of the regenerative heat transfer process. The results show that the influence of the switching time related to the dimensionless time has little effect on the device, and the influence of the airflow velocity related to the dimensionless length on the temperature distribution in the device is more than that of the dimensionless length. Big.
2. one dimension model of the thermal oxidation device of ventilation gas storage is carried out. One dimension calculation model of the ventilation gas regenerative oxidation device is set up. The operation process of the ventilation gas regenerative oxidation device is simulated with the open source Matmol program. The simulation results are in good agreement with the experiment. The calculation results show that oxygen is in good agreement with the experiment. The regenerative conditions of the device involve the flow velocity, the methane concentration, the structure of the regenerator and so on. It is the key to the stable operation of the device. The influence of the flow rate has a mechanism of multiple effects. This multi effect mechanism will make the ventilation and gas storage oxidation device have the lower limit of ventilation and the upper limit of ventilation in the actual operation.
3. the three-dimensional modeling study of the thermal oxidation device of ventilation gas storage is carried out. Based on the hypothesis of the continuous distribution of porous media, a three-dimensional calculation model of the heat storage and oxidation process of ventilation gas is established by using the function module of the custom scalar equation of Fluent software, and the flow of the ventilation and gas storage heat oxidation device is studied by this calculation model. The calculation results show that the rectifying effect of the area of the honeycomb regenerator makes the structure of the inlet at the two ends of the industrial device have little effect on the flow distribution in the device. The heat dissipation will affect the temperature distribution of methane in the device, and the cavity in the experimental structure has a small mixing effect on the air flow. When the switching time is shortened, the total methane conversion rate of the device will be reduced. According to the calculation of the non dimensional switching time, the switching time of the device can be selected as 60s-120s..
4. the design method of regenerative oxidation device based on regenerative heat transfer process is carried out in view of the design requirements of the current ventilation and gas regenerative oxidation device. A calculation method for the minimum stable operation of methane concentration in the regenerative oxidation unit is proposed, and the results are compared with the experimental results. The prediction results and experiments of the calculated model are also carried out. This method is better. Based on this method, the parameters of the ventilation range, the demand of the regenerator are further calculated. The calculation results show that there is a lower limit of ventilation determined mainly by heat dissipation and the upper limit of ventilation determined by the regenerative performance. The results of the calculation of the flue gas diversion and the running results of the stable operation show that this paper is proposed in this paper. The design method can be used in the design of industrial equipment.
【學(xué)位授予單位】:中國科學(xué)院研究生院(工程熱物理研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TD712
【參考文獻】
相關(guān)期刊論文 前10條
1 李偉,祁海鷹,由長福,徐旭常;蜂巢蓄熱體傳熱性能的數(shù)值研究[J];工程熱物理學(xué)報;2001年05期
2 王一坤;劉銀河;車得福;;通風瓦斯處理系統(tǒng)燃燒特性研究[J];工程熱物理學(xué)報;2011年01期
3 艾元方;孫英文;黃國棟;張燦;;用拉普拉斯變換法求解蜂窩蓄熱體氣固溫度分布[J];工業(yè)加熱;2006年02期
4 周懷春,盛鋒,姚洪,鄭楚光;高溫空氣燃燒技術(shù)──21世紀關(guān)鍵技術(shù)之一[J];工業(yè)爐;1998年01期
5 蔣紹堅,曹小玲,汪洋洋,熊家政,李勇,魯志昂;蜂窩陶瓷蓄熱體傳熱數(shù)學(xué)模型及傳熱系數(shù)求解[J];工業(yè)爐;2001年03期
6 李朝祥,郭威;蜂窩狀陶瓷蓄熱體熱交換過程的數(shù)值模擬[J];安徽工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2004年03期
7 呂元;姜凡;肖云漢;;煤礦通風瓦斯氧化處理實驗裝置設(shè)計[J];環(huán)境工程;2011年04期
8 蕭琦;鄧浩鑫;呂元;肖云漢;;煤礦通風瓦斯蓄熱預(yù)熱過程研究[J];采礦與安全工程學(xué)報;2012年02期
9 王鵬飛;馮濤;郝小禮;;煤礦乏風瓦斯熱逆流氧化的一維數(shù)值模擬[J];采礦與安全工程學(xué)報;2012年03期
10 唐帥;劉永啟;毛明明;高振強;;乏風氧化裝置進氣導(dǎo)流的流動均勻性研究[J];煤炭工程;2012年01期
相關(guān)博士學(xué)位論文 前2條
1 呂元;煤礦通風瓦斯的蓄熱氧化處理裝置研究[D];中國科學(xué)院研究生院(工程熱物理研究所);2012年
2 王鵬飛;煤礦乏風低濃度瓦斯熱逆流氧化理論及實驗研究[D];中南大學(xué);2012年
,本文編號:1896400
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1896400.html