天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 安全工程論文 >

深部開(kāi)采復(fù)合高位巷優(yōu)化布置及次生災(zāi)害分析

發(fā)布時(shí)間:2018-05-08 10:59

  本文選題:復(fù)合高位巷 + 優(yōu)化布置; 參考:《中國(guó)礦業(yè)大學(xué)》2014年碩士論文


【摘要】:瓦斯災(zāi)害嚴(yán)重制約了礦井安全生產(chǎn),并且隨著開(kāi)采深度增加,災(zāi)害程度越演越烈。對(duì)于深部高瓦斯、高地應(yīng)力、高突出危險(xiǎn)性及低透氣性首采煤層的瓦斯治理,成為深部礦井的研究熱點(diǎn)。另外當(dāng)前我國(guó)經(jīng)濟(jì)下行壓力增大,實(shí)現(xiàn)瓦斯治理工程的高效利用,,也是礦井節(jié)能增效的重要途徑。 復(fù)合高位巷技術(shù)是在常規(guī)走向高抽巷的基礎(chǔ)上,通過(guò)對(duì)高位巷優(yōu)化布置及次生災(zāi)害的有效控制,實(shí)現(xiàn)高位巷“一巷兩用”:前期準(zhǔn)備階段,掩護(hù)突出煤層煤巷掘進(jìn);后期回采階段,治理采空區(qū)及鄰近層瓦斯。作為一種新型復(fù)合技術(shù),復(fù)合高位巷技術(shù)實(shí)現(xiàn)了一措并舉,是對(duì)深部礦井瓦斯治理和節(jié)能增效的有益嘗試。 本文以平煤四礦三水平己15-31040首采面為研究背景,采用理論分析、物理模擬、數(shù)值分析及工業(yè)應(yīng)用等方法,針對(duì)復(fù)合高位巷層位、內(nèi)錯(cuò)間距、采空區(qū)瓦斯治理效能及次生災(zāi)害發(fā)生特點(diǎn)展開(kāi),主要取得以下成果: 首先,分析了采場(chǎng)裂隙形成及瓦斯運(yùn)移規(guī)律,得出:采場(chǎng)裂隙分為離層裂隙和貫穿裂隙,分別為瓦斯提供積聚空間和運(yùn)移通道;覆巖內(nèi)瓦斯存在介質(zhì)滲流和浮升擴(kuò)散兩種運(yùn)移方式,采空區(qū)回風(fēng)側(cè)離層區(qū)是高位抽采工程最佳施工地點(diǎn)。 其次,通過(guò)相似實(shí)驗(yàn)和FLAC3D數(shù)值模擬對(duì)復(fù)合高位巷合理布置進(jìn)行優(yōu)化,得出:該工作面每推進(jìn)21m,頂板發(fā)生一次周期來(lái)壓,高位巷結(jié)構(gòu)失穩(wěn)與頂板破壞同步發(fā)生;根據(jù)統(tǒng)計(jì)計(jì)算、頂板下沉量、裂隙發(fā)育狀態(tài),結(jié)合頂板巖性,確定高位巷位于己15煤頂板16m,細(xì)粒砂巖下部,巷道頂部沿砂質(zhì)泥巖頂板掘進(jìn);高位巷掩護(hù)煤巷同步掘進(jìn)中,水平應(yīng)力集中是造成巷道破壞的主要原因,通過(guò)對(duì)高位巷與煤巷內(nèi)錯(cuò)0m、5m、10m、20m間距下水平應(yīng)力、頂板下沉等數(shù)據(jù)的分析,確定高位巷與煤巷同步掘進(jìn)合理內(nèi)錯(cuò)間距20m。 最后,建立U+I和U型CFD模型研究復(fù)合高位巷瓦斯治理效果和次生災(zāi)害發(fā)生特點(diǎn),得出:高位抽采下,采空區(qū)近底板附近出現(xiàn)瓦斯降低區(qū),瓦斯帶狀分布出現(xiàn)上移現(xiàn)象;回風(fēng)側(cè)瓦斯?jié)舛认陆?2%,高位巷對(duì)上隅角瓦斯具有明顯治理效果。氧氣沿傾向分布均勻;采空區(qū)散熱帶和氧化帶沿走向出現(xiàn)明顯加寬后移,其中機(jī)巷側(cè)氧化帶后移35m,寬度增加29.2%,加寬后移最為嚴(yán)重。復(fù)合高位巷在治理瓦斯的同時(shí)也加劇了諸如采空區(qū)自燃、爆炸等次生災(zāi)害的發(fā)生,加快工作面推進(jìn)速度是預(yù)防采空區(qū)次生災(zāi)害發(fā)生的重要措施,為保證正常生產(chǎn),工作面推進(jìn)速度需提高27.8%左右。當(dāng)工作面推進(jìn)速度提高受限時(shí),應(yīng)加強(qiáng)采空區(qū)管理并采取相應(yīng)的次生災(zāi)害治理措施。
[Abstract]:Gas disaster seriously restricts mine safety production, and with the increase of mining depth, the disaster degree becomes more and more severe. For deep high gas, high ground stress, high outburst risk and low permeability of the first coal seam gas treatment, become a deep mine research hotspot. In addition, it is also an important way to save energy and increase efficiency by increasing the downward pressure of economy in our country and realizing the efficient utilization of gas control project. The technology of compound high level roadway is based on the conventional high drawing roadway, through the optimization arrangement of high level roadway and the effective control of secondary disaster, the "one roadway dual purpose" of high level roadway can be realized: in the early preparation stage, the coal roadway driving with outburst coal seam can be covered; In the later stage of mining, gas in goaf and adjacent strata will be controlled. As a new type of compound technology, the technology of compound high level roadway has realized the same measures, which is a beneficial attempt to control gas in deep mine and to save energy and increase efficiency. In this paper, based on the research background of 15-31040 first mining face of No. 3 level in the fourth coal mine, theoretical analysis, physical simulation, numerical analysis and industrial application are adopted, aiming at the interfault spacing of compound high roadway. The efficiency of gas control and the characteristics of secondary disasters in goaf are carried out. The main achievements are as follows: First of all, the formation of stope fissure and the law of gas migration are analyzed. It is concluded that the stope fissure can be divided into two categories: the separated layer fissure and the penetrating fissure, which provide gas accumulation space and migration channel respectively; There are two migration modes of gas in overburden rock: medium seepage and floatation diffusion. Secondly, through similar experiment and FLAC3D numerical simulation to optimize the reasonable arrangement of compound high roadway, it is concluded that every 21 m advance of this face, the roof comes under periodic pressure, and the instability of the structure of the high roadway and the roof failure occur synchronously; according to the statistical calculation, Roof subsidence, crack development state, combined with roof lithology, it is determined that the high roadway is located at 16m of coal roof, the bottom of fine-grained sandstone, the top of roadway is driven along sand mudstone roof, and the high roadway covers coal roadway at the same time. Horizontal stress concentration is the main cause of roadway failure. By analyzing the data of horizontal stress and roof subsidence at the distance of 0 mmm ~ 5 m ~ 10 m ~ (20 m) between high and high roadway and coal roadway, it is determined that the reasonable internal dislocation distance is 20 m for simultaneous driving of high level roadway and coal roadway. Finally, the U I and U type CFD models are established to study the effect of gas treatment and the characteristics of secondary disasters in compound high level roadway. It is concluded that under high mining, there is a gas reduction area near the floor of goaf, and the distribution of gas belt appears upward; The gas concentration at the return air side is reduced by 42, and the gas in the upper corner of the high lane has obvious control effect. The oxygen distribution is uniform along the tendency, and the radiating zone and oxidation zone in goaf are obviously widened and moved backward along the strike, in which the oxidation zone in the side of the roadway moves back 35 m, the width increases 29.2 m, and the widening backward shift is the most serious. The compound high level roadway also intensifies the occurrence of secondary disasters such as spontaneous combustion and explosion in goaf while controlling gas. Speeding up the speed of working face advance is an important measure to prevent secondary disaster in goaf, in order to ensure normal production, The speed of working face advance needs to be increased by about 27.8%. The goaf management should be strengthened and the corresponding secondary disaster control measures should be taken when the speed of working face is limited.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TD712

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張春;題正義;李宗翔;;采空區(qū)孔隙率的空間立體分析研究[J];長(zhǎng)江科學(xué)院院報(bào);2012年06期

2 林府進(jìn);徐貴發(fā);董鋼鋒;;松軟突出煤層順層長(zhǎng)鉆孔成孔技術(shù)研究[J];礦業(yè)安全與環(huán)保;2006年02期

3 周廷揚(yáng);;高壓水力割縫提高瓦斯抽采率的技術(shù)研究[J];礦業(yè)安全與環(huán)保;2010年S1期

4 鄒熹正;對(duì)壓力拱假說(shuō)的新解釋[J];礦山壓力;1989年01期

5 張春雷,李太任,熊琦華;煤巖結(jié)構(gòu)與煤體裂隙分布特征的研究[J];煤田地質(zhì)與勘探;2000年05期

6 程國(guó)軍;回采工作面順層鉆孔抽放瓦斯研究[J];煤炭工程;2005年03期

7 馬健;丁日佳;;煤炭企業(yè)在國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展中的地位[J];煤炭技術(shù);2007年06期

8 陳登紅;李德忠;;上隅角瓦斯積聚問(wèn)題探究[J];煤炭技術(shù);2009年02期

9 魏勝田;;高位鉆場(chǎng)穿層鉆孔預(yù)抽上覆被保護(hù)層瓦斯技術(shù)[J];煤炭科學(xué)技術(shù);2007年06期

10 文虎;綜放工作面采空區(qū)煤自燃過(guò)程的動(dòng)態(tài)數(shù)值模擬[J];煤炭學(xué)報(bào);2002年01期



本文編號(hào):1861118

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1861118.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8bdca***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com