天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 安全工程論文 >

九道嶺礦綜放采空區(qū)防滅火數(shù)值模擬研究

發(fā)布時(shí)間:2018-05-04 21:37

  本文選題:“O”型圈 + 多孔介質(zhì); 參考:《遼寧工程技術(shù)大學(xué)》2013年碩士論文


【摘要】:本論文結(jié)合遼寧九道嶺煤業(yè)有限公司(九道嶺礦)-825綜放面采空區(qū)自燃防治實(shí)際問(wèn)題,運(yùn)用CFD數(shù)值仿真技術(shù)開(kāi)展研究。采空區(qū)模型根據(jù)九道嶺礦工作面的實(shí)際尺寸,用Gambit構(gòu)建了有傾斜角度的3D綜放采空區(qū)模型;采空區(qū)巖石冒落是非均勻的,冒落碎脹系數(shù)及孔隙度分布按“O”型圈分布的模型建立;粘性阻力系數(shù)和慣性阻力系數(shù)的計(jì)算是根據(jù)非線性滲流方程推導(dǎo)出來(lái)的經(jīng)驗(yàn)公式來(lái)確定。多孔介質(zhì)模塊用自定義函數(shù)UDF來(lái)實(shí)現(xiàn),考慮重力因素。 結(jié)合九道嶺礦實(shí)際防滅火工作,對(duì)常溫40℃注氮、中溫20℃注氮、低溫-20℃注氮、上行風(fēng)、下行風(fēng)、中部注泡沫墻注氮和不注氮情況、進(jìn)風(fēng)半側(cè)注泡沫墻注氮和不注氮情況、低溫-20℃注氮?dú)庀滦酗L(fēng)在進(jìn)風(fēng)半側(cè)注泡沫墻模型10種情況進(jìn)行了Fluent數(shù)值模擬,得到10種不同分布條件下風(fēng)壓等值面線圖、氣體濃度分布圖,并通過(guò)常溫和低溫注氮對(duì)比、上行風(fēng)和下行風(fēng)對(duì)比、中部泡沫墻和進(jìn)風(fēng)半側(cè)泡沫墻分別在不注氮和注氮情況的對(duì)比,得到防火最優(yōu)方案。 (1)通過(guò)常溫注氮和低溫注氮的模擬,得出低溫注氮時(shí)采空區(qū)底板附近氮濃度較高,氧濃度高于10%區(qū)域回縮約100m;(2)通過(guò)上行通風(fēng)和下行通風(fēng)的對(duì)比結(jié)果顯示,采用下行通風(fēng)可以在很大程度上控制工作面向采空區(qū)的漏風(fēng)量,比上行通風(fēng)漏風(fēng)量減少約80m3/min,下行風(fēng)的自燃氧化帶氧濃度高于16%的區(qū)域比上行風(fēng)窄60m,對(duì)防治煤自燃更有利。(3)常低溫注氮和上行風(fēng)(即不注氮?dú)馇闆r)的模擬結(jié)果對(duì)比,通過(guò)計(jì)算漏風(fēng)量得出注氮可以減少漏風(fēng)約20m3,而低溫注氮比高溫注氮控制漏風(fēng)效果更明顯。(4)中部注泡沫墻和進(jìn)風(fēng)半側(cè)注泡沫墻分別在注氮和不注氮情況下的模擬結(jié)果對(duì)比充分說(shuō)明泡沫墻具有擋板作用,能阻止一部分漏風(fēng),在此基礎(chǔ)上注氮可進(jìn)一步減少漏風(fēng)量。采用進(jìn)風(fēng)半側(cè)注泡沫墻耗氧層氧濃度高于10%的區(qū)域比中部注泡沫墻的要小約10倍。從而得出,九道嶺礦采用低溫注氮、下行風(fēng)、進(jìn)風(fēng)半側(cè)泡沫墻三種模型都有利于控制漏風(fēng)量,減少的采空區(qū)供氧,縮短遺留煤耗氧層中自燃氧化帶的寬度,進(jìn)而通過(guò)建立同時(shí)滿足低溫注氮、下行風(fēng)、進(jìn)風(fēng)半側(cè)泡沫墻三個(gè)條件的模型并進(jìn)行Fluent模擬,模擬結(jié)果驗(yàn)證了推斷的正確性。
[Abstract]:In this paper, combined with the actual problems of spontaneous combustion prevention and control in the goaf of the -825 fully mechanized caving face of the nine Dao Ling Coal Co., Ltd. (nine Dao Ling coal mine), the study is carried out by the CFD numerical simulation technology. The goaf model is based on the actual size of the working face of the nine mountain range, and uses Gambit to build a 3D fully mechanized caving and mining area model with the inclined angle, and the rock caving in the goaf is inhomogeneous. The coefficient and porosity distribution of the caving bulge and the porosity are established according to the "O" type ring distribution model. The calculation of the viscous drag coefficient and the inertia resistance coefficient is determined by the empirical formula derived from the nonlinear seepage equation. The porous medium module is realized by the custom function UDF, considering the gravity factor.
Combined with the actual fire prevention and extinguishing work of nine mountain range mine, nitrogen injection at 40 C at normal temperature, nitrogen injection at medium temperature 20 C, nitrogen injection at low temperature -20 C, upward wind, downward wind, nitrogen injection and nitrogen injection in the middle injection foam wall, nitrogen injection and nitrogen injection in the half side injection foam wall, and 10 cases of Fluent injection foam wall model in the semi side of the air inlet at low temperature. In the numerical simulation, the air pressure contour map and gas concentration distribution diagram under 10 different distribution conditions are obtained, and the comparison between the upper and lower winds is compared through the contrast between the normal temperature and the low temperature nitrogen injection, the middle foam wall and the air inlet half foam wall are compared with the nitrogen and nitrogen injection conditions respectively, and the best fire prevention scheme is obtained.
(1) through the simulation of nitrogen injection at normal temperature and low temperature nitrogen injection, it is found that the nitrogen concentration near the bottom floor of the goaf is higher and the oxygen concentration is higher than the 10% region 100m. (2) through the comparison between the uplink ventilation and the downlink ventilation, the downward ventilation can be used to control the air leakage for the goaf to a great extent, compared with the upward ventilation. The air leakage is reduced by about 80m3/min, and the oxygen concentration in the spontaneous combustion oxidation zone of the downwind is narrower than that of the upper wind 60m and is more favorable for preventing the spontaneous combustion of coal. (3) the comparison of the simulation results of the constant low temperature nitrogen injection and upper wind (i.e., no nitrogen injection) shows that nitrogen injection can reduce the air leakage of about 20m3 by calculating the air leakage, and the low temperature nitrogen injection is controlled by the high temperature nitrogen injection. The effect of air leakage is more obvious. (4) the comparison of the simulation results in the middle injection foam wall and the half side injection foam wall under the condition of nitrogen injection and nitrogen injection shows that the foam wall has the effect of baffle and can prevent a part of air leakage. On this basis, the nitrogen injection can further reduce the air leakage. The oxygen concentration in the oxygen injection wall of the half side injection foam wall of the inlet is higher than 10%. The region is about 10 times smaller than that in the middle part of the foam wall. Thus, it is concluded that the three models of nine mountain mines using low temperature nitrogen injection, downward wind and half side foam wall are all beneficial to control the air leakage, reduce the oxygen supply in the goaf, shorten the width of the spontaneous combustion oxidation zone in the oxygen layer of the coal consumption, and enter the same time to meet the low temperature injection, downwind, and air intake. The three conditions of the half wall foam wall are simulated by Fluent, and the simulation results verify the correctness of the inference.

【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TD753

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 李宗翔;孫學(xué)強(qiáng);賈進(jìn)章;;Y形通風(fēng)采空區(qū)自燃與有害氣體排放的數(shù)值模擬[J];安全與環(huán)境學(xué)報(bào);2005年06期

2 李宗翔;溫永宇;張金玉;;煤樣封閉耗氧試驗(yàn)及其參數(shù)測(cè)定分析[J];安全與環(huán)境學(xué)報(bào);2009年01期

3 鄧軍,徐精彩,陳曉坤;煤自燃機(jī)理及預(yù)測(cè)理論研究進(jìn)展[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2003年04期

4 汪建科,何俊發(fā),王紅霞,陳仁松;分布式光纖溫度傳感器的研究現(xiàn)狀與發(fā)展趨勢(shì)[J];光機(jī)電信息;2005年07期

5 馬尚權(quán);王軼波;劉德民;儲(chǔ)文勝;;地質(zhì)指標(biāo)自動(dòng)量化及神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)瓦斯涌出量[J];煤炭科學(xué)技術(shù);2006年12期

6 胡千庭;梁運(yùn)培;劉見(jiàn)中;;采空區(qū)瓦斯流動(dòng)規(guī)律的CFD模擬[J];煤炭學(xué)報(bào);2007年07期

7 李宗翔;衣剛;武建國(guó);郭達(dá);趙春景;趙丹;;基于“O”型冒落及耗氧非均勻采空區(qū)自燃分布特征[J];煤炭學(xué)報(bào);2012年03期

,

本文編號(hào):1844746

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1844746.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4eee5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com