CAS防撞算法的目標(biāo)跟蹤技術(shù)的研究與實(shí)現(xiàn)
發(fā)布時(shí)間:2018-04-13 22:14
本文選題:TCAS + CAS。 參考:《電子科技大學(xué)》2015年碩士論文
【摘要】:安全是航空業(yè)永恒的主題。為了保證飛機(jī)的飛行安全,必須獲知一定范圍內(nèi)飛機(jī)的飛行狀態(tài)信息,包括位置、速度、預(yù)期航跡等,據(jù)此對(duì)各機(jī)的飛行狀態(tài)做出調(diào)整以保證安全。運(yùn)行于地面的空中交通管制系統(tǒng)(ATC)并不能完全保證飛行安全,機(jī)載防撞系統(tǒng)(TCAS)作為ATC系統(tǒng)的一個(gè)備份,獨(dú)立于ATC系統(tǒng)運(yùn)行,用于避免空中飛機(jī)相撞。TCAS對(duì)本機(jī)周圍一定范圍內(nèi)的飛機(jī)進(jìn)行監(jiān)視、跟蹤以及向飛行員提供防撞咨詢,目標(biāo)跟蹤是TCAS正常工作的基礎(chǔ),直接決定了防撞咨詢的可靠性,CAS防撞系統(tǒng)是TCAS的核心子系統(tǒng),完成跟蹤和防撞咨詢功能。本文主要研究和實(shí)現(xiàn)CAS防撞系統(tǒng)的目標(biāo)跟蹤技術(shù)。對(duì)周圍飛機(jī)的跟蹤是一個(gè)三維空間目標(biāo)跟蹤問題,由于TCAS在垂直方向和水平方向的跟蹤測量方法不同,論文分別從垂直方向和水平方向?qū)δ繕?biāo)跟蹤器進(jìn)行設(shè)計(jì)和實(shí)現(xiàn):垂直方向上,TCAS的測量高度報(bào)告分為25ft精度和100ft精度。對(duì)25ft精度,跟蹤器采用-濾波器;對(duì)100ft精度,在采用-濾波器時(shí)會(huì)產(chǎn)生不可接受的跟蹤誤差,設(shè)計(jì)了非線性高度跟蹤器,核心思想是利用多次高度層穿越占用時(shí)間以及穿越高度層數(shù)來計(jì)算高度率,間接對(duì)高度進(jìn)行跟蹤,并將飛行過程劃分為5個(gè)不同狀態(tài),針對(duì)不同狀態(tài)采用不同修正公式對(duì)高度率進(jìn)行修正。仿真結(jié)果及誤差分析顯示非線性高度跟蹤器在跟蹤精度和響應(yīng)時(shí)間兩方面均優(yōu)于-跟蹤器,有效提高TCAS做出防撞咨詢的可靠性。水平方向上,水平跟蹤主要利用-濾波器和卡爾曼濾波器。水平方向的機(jī)動(dòng)情況復(fù)雜,為快速對(duì)機(jī)動(dòng)情況進(jìn)行跟蹤設(shè)計(jì)了三個(gè)獨(dú)立跟蹤器:笛卡爾跟蹤器、拋物線跟蹤器和距離方位跟蹤器,針對(duì)不同的目的和不同的條件采用不同的跟蹤器,最后綜合三個(gè)跟蹤器的結(jié)果以及飛行過程數(shù)學(xué)模型進(jìn)行跟蹤。仿真結(jié)果驗(yàn)證了水平跟蹤器在跟蹤精度和應(yīng)對(duì)機(jī)動(dòng)情況的及時(shí)性兩方面均滿足TCAS最低性能標(biāo)準(zhǔn)的要求。為了方便直觀的對(duì)跟蹤系統(tǒng)進(jìn)行仿真測試,設(shè)計(jì)了基于Matlab的可視化綜合仿真平臺(tái),采用TCAS系統(tǒng)標(biāo)準(zhǔn)規(guī)定的測試用例對(duì)跟蹤算法進(jìn)行仿真測試,結(jié)果表明跟蹤系統(tǒng)可以有效實(shí)現(xiàn)CAS防撞系統(tǒng)對(duì)于跟蹤性能的要求,可應(yīng)用與工程實(shí)際中。
[Abstract]:Safety is the eternal theme of the aviation industry.In order to ensure the flight safety of the aircraft, it is necessary to know the flight state information of the aircraft in a certain range, including the position, speed, expected track and so on. According to this, the flight state of each aircraft must be adjusted to ensure the safety.Air Traffic Control system (ATC) running on the ground can not guarantee flight safety completely. As a backup of the ATC system, the airborne anti-collision system runs independently of the ATC system.It is used to avoid air plane collision. TCAS monitors, tracks and provides anti-collision advice to pilots in a certain range around the aircraft. Target tracking is the basis of normal operation of TCAS.The reliability of anti-collision consultation system is the core subsystem of TCAS, which completes the function of tracking and anti-collision consultation.This paper mainly studies and realizes the target tracking technology of CAS anti-collision system.The tracking of surrounding aircraft is a three-dimensional object tracking problem. Because of the different tracking and measuring methods of TCAS in vertical and horizontal direction,In this paper, the target tracker is designed and implemented from the vertical direction and the horizontal direction. The height report of the 25ft is divided into 25ft accuracy and 100ft precision.For 25ft precision, the tracker adopts a filter, and for the 100ft precision, an unacceptable tracking error occurs when using the 100ft filter. A nonlinear height tracker is designed.The core idea is to calculate the altitude rate by using the time and number of traversing altitude layers, to track the altitude indirectly, and to divide the flight process into five different states.According to different states, different correction formulas are used to modify the height rate.The simulation results and error analysis show that the nonlinear height tracker is superior to the tracker in both tracking accuracy and response time, which effectively improves the reliability of TCAS in making anti-collision consultation.Horizontal tracking mainly uses-filter and Kalman filter.Three independent trackers are designed for the fast tracking of maneuvering: Cartesian tracker, parabola tracker and distance azimuth tracker.Different trackers are used for different purposes and different conditions. Finally, the results of the three trackers and the mathematical model of flight process are synthesized to track.The simulation results show that the horizontal tracker meets the requirements of TCAS minimum performance standard in terms of tracking accuracy and timeliness of responding to maneuvering conditions.In order to test the tracking system conveniently and intuitively, a visual comprehensive simulation platform based on Matlab is designed, and the tracking algorithm is simulated and tested by the test cases specified in the TCAS system standard.The results show that the tracking system can effectively meet the tracking performance requirements of CAS collision prevention system and can be applied in engineering practice.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:V328;V244.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 彭良福;林云松;;機(jī)載防撞系統(tǒng)垂直防撞的物理模型[J];電訊技術(shù);2010年08期
,本文編號(hào):1746431
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1746431.html
最近更新
教材專著