輕型TLP垂向振動(dòng)的磁流變阻尼器半主動(dòng)控制研究
本文選題:張力腿平臺(tái) 切入點(diǎn):磁流變阻尼器 出處:《華南理工大學(xué)》2013年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著陸地上石油資源的日益枯竭,海上石油的開(kāi)采越來(lái)越受到各國(guó)的重視,海上石油的產(chǎn)量所占的比例也越來(lái)越高。TLP(“Tension Leg Platform”,張力腿平臺(tái)),是一種適應(yīng)于深海作業(yè),性能優(yōu)良的海洋平臺(tái),其具有如下優(yōu)勢(shì):1、適用水深范圍為200-2500米。2、可使用干井口,適用于采油平臺(tái)。3、安裝維護(hù)費(fèi)用較低。本文在相關(guān)研究進(jìn)展的基礎(chǔ)上,提出適用于淺海的輕型TLP,這種輕型TLP,造價(jià)相對(duì)導(dǎo)管架平臺(tái)更加低廉,且可重復(fù)使用。 TLP具有半順應(yīng)半剛性的結(jié)構(gòu)特性,其平面內(nèi)的運(yùn)動(dòng)(橫蕩、縱蕩、艏搖)為順應(yīng)性,平面外的運(yùn)動(dòng)(橫搖、縱搖、垂蕩)則近似剛性。應(yīng)用于深水的TLP,其垂直方向的運(yùn)動(dòng)周期較短,為2-4秒,而輕型TLP垂向運(yùn)動(dòng)周期更短。TLP的這種結(jié)構(gòu)特點(diǎn),產(chǎn)生了一些其他海洋平臺(tái)所不具備或不常見(jiàn)的運(yùn)動(dòng)響應(yīng),如高頻垂向振動(dòng)springing(彈振)和ringing(鳴振)。TLP的這種垂向運(yùn)動(dòng)響應(yīng),很容易造成平臺(tái)本體以及張力腿的疲勞和損傷,必須要加以研究和控制。 磁流變液(magneto-rheological fluid,MRF)是一種智能材料,它能夠在強(qiáng)磁場(chǎng)的作用下從牛頓流體變化為粘塑性流體。用磁流變液制作的耗能器具有能耗低、出力大、響應(yīng)速度快、結(jié)構(gòu)簡(jiǎn)單、阻尼力連續(xù)可調(diào)及價(jià)格便宜,并可方便地與微機(jī)控制結(jié)合等優(yōu)良特點(diǎn)。研究表明,恰當(dāng)?shù)陌惭b磁流變阻尼器控制效果比被動(dòng)控制效果好,甚至可以超過(guò)主動(dòng)控制的效果。 本文擬采用磁流變阻尼器(magneto-rheological fluid damper,MR阻尼器)對(duì)輕型TLP的垂向振動(dòng)進(jìn)行半主動(dòng)控制。首先利用多體水動(dòng)力軟件AQWA軟件,計(jì)算平臺(tái)在頻域下的一階、二階波浪力和水動(dòng)力參數(shù),然后通過(guò)MATLAB語(yǔ)言編寫(xiě)程序,利用AQWA所求出的水動(dòng)力參數(shù)進(jìn)行頻域到時(shí)域下的轉(zhuǎn)換,對(duì)平臺(tái)的垂向波浪響應(yīng)進(jìn)行數(shù)值計(jì)算。選取線性二次型(LQR)經(jīng)典最優(yōu)控制算法和限界Hrovat半主動(dòng)最優(yōu)控制算法,,通過(guò)對(duì)安裝了磁流變阻尼器的TLP的垂向半主動(dòng)控制進(jìn)行數(shù)值模擬,并與采用LQR算法的主動(dòng)控制以及未安裝任何控制裝置的無(wú)控狀態(tài)進(jìn)行對(duì)比,以考察其控制效果。
[Abstract]:With the increasing depletion of petroleum resources on land, more and more countries pay attention to the exploitation of offshore oil, and the proportion of offshore oil production is increasing. TLP ("Tension Leg Platform") is a kind of tension leg platform, which is suitable for deep-sea operations. The offshore platform with excellent performance has the following advantages: it has the following advantages: it has the following advantages: it has a water depth range of 200-2500 m. 2, it can use dry wellhead, it is suitable for oil recovery platform. 3, and the installation and maintenance costs are relatively low. The light TLPs suitable for shallow water are proposed. The light TLPs are cheaper than jacket platforms and can be reused. TLP has a semi-compliant semi-rigid structure, its in-plane motion (swinging, swinging, yawing) is compliance, off-plane motion (roll, pitch, pitch), In deep water, the vertical motion period is shorter, ranging from 2 to 4 seconds, while the light TLP vertical motion period is much shorter. Some motion responses that are not available or common to other offshore platforms, such as those of high frequency vertical vibration springing (elastic vibration) and ringing (ringing. TLP), can easily cause fatigue and damage to the platform body and tension legs, It must be studied and controlled. Magneto-rheological fluid (MRF) is a kind of intelligent material, which can change from Newtonian fluid to viscoplastic fluid under strong magnetic field. The damping force can be adjusted continuously and the price is cheap, and it can be easily combined with microcomputer control. The research shows that the control effect of properly installing Mr damper is better than that of passive control, and can even exceed the effect of active control. In this paper, magneto-rheological fluid damper (magneto-rheological fluid damper) is used to control the vertical vibration of light TLP. Firstly, the first and second order wave forces and hydrodynamic parameters of the platform in frequency domain are calculated by using the multi-body hydrodynamic software AQWA software. Then the program is written by MATLAB language, and the hydrodynamic parameters obtained by AQWA are converted from frequency domain to time domain. The vertical wave response of the platform is numerically calculated. The classical optimal control algorithm and the bounded Hrovat semi-active optimal control algorithm are selected to simulate the vertical semi-active control of TLP with magnetorheological damper. It is compared with the active control using LQR algorithm and the uncontrolled state without any control device, so as to investigate its control effect.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TB535;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉海霞;;深海半潛式鉆井平臺(tái)的發(fā)展[J];船舶;2007年03期
2 李華軍,Sau-LonJamesHU,TomotsukaTAKAYAMA;Optimal Active Control of Wave-Induced Vibration for Offshore Platforms[J];China Ocean Engineering;2001年01期
3 江宜城 ,唐家祥;Torsional Response of the Offshore Platform with TMD[J];China Ocean Engineering;2001年02期
4 林均岐,王云劍;調(diào)諧質(zhì)量阻尼器的優(yōu)化分析[J];地震工程與工程振動(dòng);1996年01期
5 歐進(jìn)萍,龍旭,肖儀清,吳斌;導(dǎo)管架式海洋平臺(tái)結(jié)構(gòu)阻尼隔振體系及其減振效果分析[J];地震工程與工程振動(dòng);2002年03期
6 張春巍,歐進(jìn)萍;海洋平臺(tái)結(jié)構(gòu)振動(dòng)的AMD主動(dòng)控制參數(shù)優(yōu)化分析[J];地震工程與工程振動(dòng);2002年04期
7 張紀(jì)剛;吳斌;歐進(jìn)萍;;海洋平臺(tái)冰振控制試驗(yàn)研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年S1期
8 閆功偉;歐進(jìn)萍;;基于AQWA的張力腿平臺(tái)動(dòng)力響應(yīng)分析[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S2期
9 孫樹(shù)民;獨(dú)樁平臺(tái)波浪反應(yīng)的TMD控制[J];港工技術(shù);2001年04期
10 劉鯤;朱航;歐進(jìn)萍;;TMD在半潛式平臺(tái)垂蕩響應(yīng)控制中的應(yīng)用[J];工程力學(xué);2011年S1期
相關(guān)碩士學(xué)位論文 前8條
1 杜林平;磁流變阻尼器在柔性底層結(jié)構(gòu)振動(dòng)控制中的應(yīng)用[D];華南理工大學(xué);2011年
2 李牧;南海張力腿平臺(tái)優(yōu)化選型研究[D];天津大學(xué);2010年
3 石麗娜;基于AQWA的大型浮體拖航性能研究[D];大連理工大學(xué);2011年
4 邸龍;磁流變阻尼器對(duì)建筑結(jié)構(gòu)的減震研究[D];西安建筑科技大學(xué);2003年
5 李宇生;基于變剛度TMD的海洋平臺(tái)振動(dòng)控制[D];中國(guó)海洋大學(xué);2003年
6 劉玲;基于變剛度TMD的海洋平臺(tái)振動(dòng)控制虛擬實(shí)現(xiàn)[D];中國(guó)海洋大學(xué);2005年
7 李化鳳;海洋平臺(tái)結(jié)構(gòu)振動(dòng)控制方法研究[D];大連理工大學(xué);2007年
8 任順利;張力腿平臺(tái)動(dòng)力響應(yīng)研究[D];中國(guó)石油大學(xué);2008年
本文編號(hào):1572140
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1572140.html