儲罐區(qū)可燃氣體泄漏擴散模擬及爆燃災害評估
本文關鍵詞: 儲罐區(qū) 泄漏擴散 非規(guī)則氣云 爆燃超壓 數(shù)值模擬 出處:《大連理工大學》2013年碩士論文 論文類型:學位論文
【摘要】:大型罐區(qū)內(nèi)因可燃氣體泄漏擴散引發(fā)的燃爆事故屢見不鮮,造成巨大的經(jīng)濟損失和人員傷亡。盡管有大量關于罐區(qū)可燃氣體泄漏擴散和燃爆的研究報道,但現(xiàn)有的研究或者關注可燃氣體泄漏擴散規(guī)律,或者考慮開敞或受限空間可燃氣體的燃爆強度,并沒有將可燃氣體因泄漏擴散形成的非規(guī)則形狀氣云的燃爆強度結合起來研究,導致研究成果無法為因儲罐內(nèi)氣體泄漏擴散繼而引起燃爆的此類事故模式提供較為明確的技術指導。 基于此,本文采用計算流體動力學方法,模擬研究了儲罐區(qū)內(nèi)可燃氣體泄漏擴散規(guī)律,重點關注了氣體因泄漏導致的非規(guī)則形狀可燃氣云形成規(guī)律,最后對非規(guī)則氣云的燃爆強度進行評估。本文主要研究內(nèi)容和結論如下: (1)建立了大型球罐區(qū)可燃氣體泄漏擴散以及燃爆的數(shù)值模擬模型。對幾何模型進行網(wǎng)格劃分并確定擴散模型的網(wǎng)格獨立解,分別對擴散和燃爆模型進行了有效性驗證。 (2)研究了罐區(qū)內(nèi)可燃氣體的泄漏擴散規(guī)律,提出采用兩個參數(shù)即水平方向最遠距離Lmax以及高度方向最大直徑Dmax定量評估泄漏氣體形成的可燃氣云范圍大小。結果表明,當無風速且儲罐壓力1MPa,球罐赤道存在150mm圓形泄漏孔時,甲烷泄漏擴散濃度沿水平方向對稱分布;泄漏1s時水平方向最遠距離Lmax為10.95m并達到穩(wěn)定狀態(tài);泄漏2s時高度方向最大直徑Dmax為8.8m達到穩(wěn)定。比較研究了甲烷、氫氣、丙烷的擴散規(guī)律,發(fā)現(xiàn)氫氣的危險性大于甲烷和丙烷。 (3)研究了儲罐壓力、泄漏孔大小和位置、風速對甲烷泄漏形成的可燃氣云范圍的影響規(guī)律。結果表明,儲罐壓力對可燃氣云范圍影響不明顯;衡量可燃氣體范圍的參數(shù)Lmax和Dmax均隨泄漏孔徑增大而增大,200mm直徑泄漏孔水平方向最遠距離Lmax和高度方向最大直徑Dmax分別為17.14m和13.5m;當泄漏孔位于儲罐底部時燃爆風險增大;Lmax和Dmax隨風速增大而減小,12m/s風速對應的Lmax和Dmax分別為8.71m和1.53m。 (4)分別采用最大直徑法、實際擴散區(qū)域法、重心高度球法和等體積球法研究了甲烷泄漏擴散形成的非規(guī)則氣云燃爆最大超壓。結果發(fā)現(xiàn),無風速且儲罐壓力1MPa,球罐赤道存在150mm圓形泄漏孔時,四種方法的最大超壓值分別為230kPa、151kPa、125kPa和130kPa;等體積球法得到的爆炸超壓值最接近可燃氣云的實際超壓,因此可用等體積球法評估非規(guī)則氣云的爆燃強度。 (5)采用等體積球法評估了不同泄漏孔徑和風速下甲烷泄漏擴散后的燃爆強度。結果表明,泄漏孔徑越大,風速越小,燃爆強度就越大。
[Abstract]:Igniting accidents caused by flammable gas leakage and diffusion in large tank areas are common, resulting in huge economic losses and casualties. Although there are a lot of research reports on flammable gas leakage diffusion and explosion in tank areas, However, the existing research either pays attention to the laws of flammable gas leakage and diffusion, or considers the ignition intensity of combustible gas in open or confined space, and does not combine the explosion intensity of irregular shaped gas cloud formed by the leakage diffusion of combustible gas. As a result, the research results can not provide more clear technical guidance for the explosion caused by gas leakage and diffusion in the tank. Based on this, a computational fluid dynamics method is used to simulate the leakage and diffusion of combustible gases in the tank area, with emphasis on the formation of irregular gas clouds caused by gas leakage. Finally, the explosion intensity of irregular gas cloud is evaluated. The main contents and conclusions of this paper are as follows:. A numerical simulation model of flammable gas leakage diffusion and explosion in a large spherical tank is established. The geometric model is meshed and the mesh independent solution of the diffusion model is determined. The effectiveness of the diffusion and explosion models is verified respectively. In this paper, the leakage and diffusion law of combustible gas in tank area is studied. Two parameters, namely, the furthest distance Lmax in horizontal direction and the maximum diameter Dmax in height direction, are proposed to quantitatively evaluate the range of gas cloud formed by leaking gas. When there are 150mm circular leakage holes in the equator of the spherical tank with no wind speed and the tank pressure is 1MPa, the methane leakage diffusion concentration distributes symmetrically along the horizontal direction, the furthest distance Lmax in the horizontal direction is 10.95m and reaches a stable state at 1s. The maximum diameters (Dmax) of height reach a stable level of 8.8m during the leakage of 2 s. The diffusion laws of methane, hydrogen and propane are compared and studied. It is found that the danger of hydrogen is greater than that of methane and propane. 3) the effects of tank pressure, leakage hole size and location, and wind speed on the range of gas cloud formed by methane leakage are studied. The results show that the effect of tank pressure on the range of gas cloud is not obvious. The parameters of Lmax and Dmax for measuring the range of combustible gas are increased with the increase of leak aperture. The maximum diameters Dmax in horizontal direction and height direction are 17.14m and 13.5m. when the leak hole is located at the bottom of the tank, the maximum diameter Dmax is 17.14m and 13.5mrespectively, and when the leak hole is located at the bottom of the tank, the blasting wind is ignited. With the increase of wind speed, the Lmax and Dmax of 12m / s wind speed are 8.71m and 1.53mrespectively. The maximum overpressure of irregular gas cloud explosion formed by methane leakage diffusion is studied by using the maximum diameter method, the actual diffusion zone method, the barycenter height sphere method and the equal volume sphere method, respectively. When there are 150 mm circular leakage holes in the equator, the maximum overpressure values of the four methods are 230 KPA 151kPa125kPa and 130kPa. the explosion overpressure obtained by the equal volume sphere method is the closest to the actual overpressure of the gas cloud. Therefore, the deflagration intensity of irregular gas cloud can be evaluated by equal volume ball method. The results show that the larger the leak aperture, the smaller the wind speed, the greater the explosion intensity.
【學位授予單位】:大連理工大學
【學位級別】:碩士
【學位授予年份】:2013
【分類號】:X937
【參考文獻】
相關期刊論文 前10條
1 程中林;液化石油氣罐區(qū)火災爆炸分析與評價[J];安徽化工;2004年01期
2 岳德鈺;陳東升;李悅;;三維計算流體力學數(shù)值模擬在重質氣體擴散方面的研究綜述[J];安徽農(nóng)業(yè)科學;2012年02期
3 江昀;汪佩蘭;;蒸氣云火災爆炸破壞作用預測方法的研究[J];兵工安全技術;2000年01期
4 張武,宇德明;可燃氣體儲罐區(qū)泄漏危險性定量分析[J];安全與環(huán)境學報;2002年01期
5 劉國梁,宣捷,杜可,趙汝敖;重煙羽擴散的風洞模擬實驗研究[J];安全與環(huán)境學報;2004年03期
6 葛秀坤;孫志紅;;工業(yè)企業(yè)事故性泄漏擴散模型[J];安全與環(huán)境學報;2006年S1期
7 孫文棟;方江敏;;LPG儲罐火災爆炸事故后果模擬方法研究[J];工業(yè)安全與環(huán)保;2009年12期
8 莫善軍;陳成江;李志凜;夏佳俊;;基于Phoenics化工儲罐區(qū)火災數(shù)值模擬研究[J];工業(yè)安全與環(huán)保;2012年03期
9 王志榮,蔣軍成;液化石油氣罐區(qū)火災危險性定量評價[J];化工進展;2002年08期
10 孟志鵬;王淑蘭;丁信偉;;障礙物附近可燃性氣體泄漏擴散的三維數(shù)值模擬[J];化工裝備技術;2007年02期
相關會議論文 前1條
1 汪海良;劉英學;崔啟筆;;LPG罐區(qū)火災爆炸事故后果評估[A];中國職業(yè)安全健康協(xié)會2008年學術年會論文集[C];2008年
相關博士學位論文 前1條
1 魏利軍;重氣擴散過程的數(shù)值模擬[D];北京化工大學;2000年
相關碩士學位論文 前8條
1 于力;受限空間天然氣泄漏擴散和爆炸的數(shù)值模擬[D];首都經(jīng)濟貿(mào)易大學;2011年
2 施志榮;化工氣體泄漏事故擴散規(guī)律的實驗室研究[D];江蘇工業(yè)學院;2006年
3 姜f ;易燃氣體泄漏擴散過程的數(shù)值模擬研究[D];首都經(jīng)濟貿(mào)易大學;2008年
4 王治華;受限空間內(nèi)氣體擴散的數(shù)值模擬及分析[D];大連理工大學;2009年
5 余照;氫泄漏與擴散數(shù)值仿真研究[D];國防科學技術大學;2008年
6 劉增蘋;有毒氣體泄漏繞障礙物擴散的研究[D];北京化工大學;2010年
7 劉佳亮;工業(yè)園區(qū)危險化學品擴散數(shù)值模擬及應用研究[D];重慶大學;2010年
8 李勝利;復雜地表形態(tài)下天然氣泄漏擴散的三維數(shù)值模擬研究[D];中國石油大學;2010年
,本文編號:1524351
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1524351.html