渦旋壓縮機(jī)曲軸部件靜動(dòng)態(tài)性能研究及優(yōu)化
[Abstract]:Because of its low noise, high efficiency, compact structure, small number of parts and stable operation, scroll compressor is widely used in automotive air conditioning, refrigeration, engine pressurization and vacuum pump industries. The main parts of scroll compressor include moving vortex disk, static vortex disk, crankshaft, balance iron, frame, bearing and anti-rotation mechanism, etc. Their force and working condition will directly or indirectly affect the efficiency and stability of the compressor. Therefore, it is very important to study and analyze the mechanical characteristics of the core parts and optimize them, and it is also the premise to ensure the performance and reliability of the scroll compressor. In view of this situation, the crankshaft and crankshaft parts of a virtual prototype of a scroll compressor are studied in this paper, and the static and dynamic mechanical characteristics of crankshafts and crankshaft components in the working process are studied and analyzed by finite element analysis (ANSYS Workbench) platform. The distance between journal bearing and angular contact ball bearing on crankshaft, shaft diameter and shaft length of crankshaft are optimized. The main contents of the research are as follows: (1) according to the meshing principle of vortex profile and the theory of normal equidistant curve, the profile of dynamic vortex disk with variable cross-section is designed. At the same time, the finite element model of crankshaft-bearing system is established according to the profile equation of the vortex disk and the basic parameters to calculate the gas force (the normal gas force rF and the tangential gas force tF). (2) during the working process of the moving vortex disk, and at the same time, the finite element model of the crankshaft-bearing system is established. The bearing is simplified to different number of uniformly distributed springs, and the influence of the number and position of springs on the radial stiffness of crankshafts is investigated. Then the maximum gas force is taken as static load, and the stress and deformation of crankshaft-bearing system under static load are simulated and analyzed at the center of eccentric section of crankshaft, and the static stiffness of crankshaft is calculated. It provides a reference for the comparison of the optimization results of crankshaft-bearing system. (3) the dynamic characteristics of crankshaft and crankshaft components are simulated. First, the first six natural frequencies, mode shapes and vibration characteristics of crankshaft and crankshaft components are obtained by modal analysis. It is found that the first six natural frequencies of crankshaft and crankshaft components are higher than those of crankshaft components. This shows that the crankshaft and the crankshaft components are not easy to resonate under the actual excitation frequency and explore the factors that affect the natural frequency of the crankshaft. At the same time, on the basis of modal analysis, harmonic response analysis of different positions on crankshaft and crankshaft components is carried out, and the characteristics of stress and displacement varying with frequency are obtained and compared. (4) the span between bearings is optimized respectively. The maximum deflection of eccentric section of crankshaft is reduced, and the radial static stiffness of crankshaft is improved by optimizing the multi-objective parameters of span 1, shaft diameter 1R and shaft length 1l, and the axial diameter 1R and shaft length 1l of crankshaft are optimized in order to reduce the maximum deflection of eccentric section of crankshaft and improve the radial static stiffness of crankshaft. Through the above optimization design, the crankshaft parts have better static and dynamic performance, thus reducing the friction between the dynamic vortex disk and the static vortex disk, making the meshing of the dynamic and dynamic vortex disk more stable and effective, and prolonging the service life of the bearing.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊驊,屈宗長(zhǎng);渦旋壓縮機(jī)泄漏研究綜述[J];流體機(jī)械;2003年11期
2 彭斌,劉振全,李海生;變頻渦旋壓縮機(jī)測(cè)試系統(tǒng)的研究[J];化工自動(dòng)化及儀表;2005年03期
3 彭斌;李超;劉振全;;天然氣變頻渦旋壓縮機(jī)的密封研究[J];潤(rùn)滑與密封;2005年06期
4 彭斌;劉振全;張洪生;張力;;天然氣變頻渦旋壓縮機(jī)的性能研究[J];蘭州理工大學(xué)學(xué)報(bào);2006年06期
5 陳榮;王文;;微型渦旋壓縮機(jī)泄漏的理論計(jì)算[J];流體機(jī)械;2008年06期
6 戴金躍;張小軍;;目前空調(diào)渦旋壓縮機(jī)發(fā)展的技術(shù)動(dòng)向[J];鎮(zhèn)江高專學(xué)報(bào);2008年03期
7 胡躍華;范海明;李海生;陳英華;李迎;;渦旋壓縮機(jī)虛擬樣機(jī)運(yùn)動(dòng)仿真的研究[J];煤礦機(jī)械;2009年02期
8 陳凱;劉益才;張建平;辛天龍;陳思明;;無(wú)油渦旋壓縮機(jī)的關(guān)鍵技術(shù)綜述及其發(fā)展展望[J];真空與低溫;2011年01期
9 平賀正治;莫培杰;;車輛空調(diào)用渦旋壓縮機(jī)[J];國(guó)外鐵道車輛;1989年04期
10 Naoshi Uchikawa;莫培杰;;空調(diào)用渦旋壓縮機(jī)[J];國(guó)外鐵道車輛;1990年05期
相關(guān)會(huì)議論文 前10條
1 王廷奇;;內(nèi)部高壓渦旋壓縮機(jī)用電機(jī)設(shè)計(jì)研究[A];走中國(guó)創(chuàng)造之路——2011中國(guó)制冷學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年
2 周英濤;鄭星;;渦旋壓縮機(jī)起動(dòng)卸載結(jié)構(gòu)的研究[A];中國(guó)制冷學(xué)會(huì)2009年學(xué)術(shù)年會(huì)論文集[C];2009年
3 廖全平;王曉剛;謝榮;;異常環(huán)境下渦旋壓縮機(jī)應(yīng)用[A];2001年全國(guó)空調(diào)器、電冰箱(柜)及壓縮機(jī)學(xué)術(shù)交流會(huì)論文集[C];2001年
4 王寶龍;李先庭;彥啟森;石文星;;渦旋壓縮機(jī)通用幾何模型研究[A];全國(guó)暖通空調(diào)制冷2004年學(xué)術(shù)年會(huì)資料摘要集(2)[C];2004年
5 趙遠(yuǎn)揚(yáng);李連生;束鵬程;;熱泵用渦旋壓縮機(jī)可靠性研究[A];第六屆全國(guó)低溫與制冷工程大會(huì)會(huì)議論文集[C];2003年
6 曹霞;陳芝久;;立式高壓型全封閉渦旋壓縮機(jī)的高機(jī)械效率分析[A];上海市制冷學(xué)會(huì)一九九九年學(xué)術(shù)年會(huì)論文集[C];1999年
7 曹霞;陳芝久;;任意實(shí)數(shù)圈渦旋壓縮機(jī)的幾何分析[A];上海市制冷學(xué)會(huì)一九九九年學(xué)術(shù)年會(huì)論文集[C];1999年
8 G.F.HUNDY;付偉純;;谷輪冷凍渦旋壓縮機(jī)及其應(yīng)用[A];2000年中國(guó)食品冷藏鏈大會(huì)暨冷藏鏈配套裝備展示會(huì)論文集[C];2000年
9 唐甜甜;汪軍;束鵬程;;渦旋壓縮機(jī)動(dòng)力模型的研究[A];第六屆全國(guó)低溫與制冷工程大會(huì)會(huì)議論文集[C];2003年
10 劉強(qiáng);樊水沖;何珊;;噴氣增焓渦旋壓縮機(jī)在空氣源熱泵熱水器中的應(yīng)用[A];第十三屆全國(guó)熱泵與系統(tǒng)節(jié)能技術(shù)大會(huì)論文集[C];2008年
相關(guān)重要報(bào)紙文章 前4條
1 記者 李晚成 通訊員 鄢立民;無(wú)油渦旋壓縮機(jī)生產(chǎn)基地開(kāi)建[N];江西日?qǐng)?bào);2010年
2 郭壽文;首個(gè)無(wú)油渦旋壓縮機(jī)生產(chǎn)基地開(kāi)建[N];中國(guó)工業(yè)報(bào);2010年
3 謝榮;春蘭5HP渦旋壓縮機(jī)技術(shù)獲突破[N];消費(fèi)日?qǐng)?bào);2007年
4 陳曉平;延伸價(jià)值鏈[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2012年
相關(guān)博士學(xué)位論文 前6條
1 肖根福;無(wú)油渦旋壓縮機(jī)腔內(nèi)流場(chǎng)建模仿真及實(shí)驗(yàn)研究[D];南昌大學(xué);2013年
2 吳昊;渦旋壓縮機(jī)對(duì)稱圓弧加直線修正型線理論研究[D];合肥工業(yè)大學(xué);2015年
3 李超;驅(qū)動(dòng)軸承內(nèi)嵌式渦旋壓縮機(jī)特性研究[D];蘭州理工大學(xué);2007年
4 余洋;渦旋壓縮機(jī)動(dòng)力特性及仿真模擬研究[D];蘭州理工大學(xué);2014年
5 劉興旺;提高變頻渦旋壓縮機(jī)壓縮性能的方法研究[D];蘭州理工大學(xué);2011年
6 趙Z,
本文編號(hào):2447040
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2447040.html