天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)電工程論文 >

液壓混合動(dòng)力起重機(jī)復(fù)合制動(dòng)系統(tǒng)研究

發(fā)布時(shí)間:2019-01-18 20:44
【摘要】:隨著全球經(jīng)濟(jì)的發(fā)展,汽車的產(chǎn)銷量及保有量逐年增加,汽車在方便人們生活的同時(shí),也存在制動(dòng)安全與能量利用效率低的問題。復(fù)合制動(dòng)技術(shù)應(yīng)用在混合動(dòng)力車輛上,可以回收制動(dòng)能量提高能量利用效率,同時(shí)可以與車輛傳統(tǒng)制動(dòng)系統(tǒng)協(xié)同工作完成復(fù)合制動(dòng),增加制動(dòng)器的壽命,提高制動(dòng)可靠性,因此復(fù)合制動(dòng)技術(shù)是混合動(dòng)力車輛研究的一個(gè)關(guān)鍵技術(shù)。然而復(fù)合制動(dòng)技術(shù)應(yīng)用集中于電混轎車上,對于液混工程車輛的研究較少。起重機(jī)整車質(zhì)量大,經(jīng)常在城市道路上行駛,制動(dòng)頻繁且能量利用效率低,引入液壓混合動(dòng)力復(fù)合制動(dòng)系統(tǒng)對提高其制動(dòng)可靠性及能量利用效率有著重要意義。通過閱讀混合動(dòng)力復(fù)合制動(dòng)技術(shù)的國內(nèi)外文獻(xiàn)發(fā)現(xiàn),目前大多數(shù)的復(fù)合制動(dòng)系統(tǒng)中的能量回收制動(dòng)子系統(tǒng)只是輔助制動(dòng),回收的制動(dòng)能量有限,并且還存在著制動(dòng)力矩分配不均勻的問題。本文依托校企合作項(xiàng)目“起重機(jī)液壓混合動(dòng)力系統(tǒng)開發(fā)”,采用理論分析、仿真研究與實(shí)驗(yàn)測試相結(jié)合的方式,對并聯(lián)液壓混合動(dòng)力起重機(jī)復(fù)合制動(dòng)系統(tǒng)展開研究。本文的研究內(nèi)容如下:以液壓混合動(dòng)力起重機(jī)為研究平臺(tái),基于其復(fù)合制動(dòng)系統(tǒng)的結(jié)構(gòu)形式與工作原理,利用數(shù)學(xué)模型的方法分析了復(fù)合制動(dòng)系統(tǒng)氣、液兩個(gè)子系統(tǒng),闡述了二次元件、電氣比例閥的控制模型;通過制動(dòng)過程中起重機(jī)的受力分析,建立了其動(dòng)力學(xué)模型;谝陨蠑(shù)學(xué)模型,對制動(dòng)力矩傳遞進(jìn)行了數(shù)學(xué)推導(dǎo)。該部分為制定控制策略和仿真建模奠定了理論基礎(chǔ)。以不改變駕駛員操作習(xí)慣及制動(dòng)能量回收最大化為目標(biāo),制定了前、后輪制動(dòng)力矩固定比例分配策略和后輪氣、液制動(dòng)力矩最優(yōu)能量回收分配策略;基于復(fù)合制動(dòng)系統(tǒng)的控制要求及影響因素,把復(fù)合制動(dòng)系統(tǒng)分成了三種工作模式:緊急制動(dòng)模式、緩速制動(dòng)模式和行車制動(dòng)模式,分別制定了每種模式的控制策略。利用AMESim仿真平臺(tái),對復(fù)合制動(dòng)系統(tǒng)中的氣、液子系統(tǒng)及控制策略和制動(dòng)過程中的起重機(jī)等進(jìn)行了仿真建模,經(jīng)過整合后得到了制動(dòng)過程中液壓混合動(dòng)力起重機(jī)的仿真模型,進(jìn)行了三種制動(dòng)模式下的仿真分析,驗(yàn)證了理論分析的正確性和控制策略的合理性。將改造后的液壓混合動(dòng)力起重機(jī)作為實(shí)驗(yàn)樣車,設(shè)計(jì)了復(fù)合制動(dòng)系統(tǒng)的實(shí)驗(yàn)方案。通過對實(shí)驗(yàn)樣車進(jìn)行實(shí)際測試,得出復(fù)合制動(dòng)技術(shù)應(yīng)用于液壓混合動(dòng)力起重機(jī),可以提高其制動(dòng)可靠性和能量利用效率。本文的研究內(nèi)容,對復(fù)合制動(dòng)技術(shù)在液壓混合動(dòng)力工程車輛上的應(yīng)用提供了相關(guān)的實(shí)際依據(jù),對液壓混合動(dòng)力工程車輛產(chǎn)品的研發(fā)具有一定的理論價(jià)值和實(shí)際意義。
[Abstract]:With the development of the global economy, the production, sales and ownership of automobiles are increasing year by year. While it is convenient for people to live, there are also the problems of braking safety and low efficiency of energy utilization. The application of compound braking technology in hybrid electric vehicle can recover braking energy and improve energy utilization efficiency. At the same time, it can work with traditional braking system to complete compound braking, increase the life of brake and improve braking reliability. Therefore, compound braking technology is a key technology in hybrid vehicle research. However, the application of compound braking technology is concentrated on electric hybrid cars, and the research on hydraulic mixing vehicles is less. The crane has high quality, often travels on urban roads, frequent braking and low energy utilization efficiency. It is of great significance to introduce hydraulic hybrid power compound braking system to improve its braking reliability and energy utilization efficiency. Through reading the domestic and foreign literature of hybrid braking technology, it is found that the energy recovery braking subsystem of most of the composite braking systems is only auxiliary braking, and the braking energy recovered is limited. There is also the problem of uneven distribution of braking torque. Based on the school-enterprise cooperation project "Development of hydraulic hybrid power system of crane", this paper studies the hybrid braking system of parallel hydraulic hybrid crane by means of theoretical analysis, simulation research and experimental test. The research contents of this paper are as follows: based on the structure and working principle of the compound braking system, based on the hydraulic hybrid electric crane as the research platform, this paper analyzes the gas and hydraulic subsystems of the compound braking system by the method of mathematical model. The control model of secondary component and electric proportional valve is described. The dynamic model of crane is established by analyzing the force of crane during braking. Based on the above mathematical model, the transfer of braking torque is derived mathematically. This part lays a theoretical foundation for the formulation of control strategy and simulation modeling. Aiming at not changing the driver's operating habits and maximizing the recovery of braking energy, the fixed proportional distribution strategy of braking torque between front and rear wheels and the optimal energy recovery and distribution strategy of rear wheel gas and hydraulic braking torque are formulated. Based on the control requirements and influencing factors of the compound braking system, the compound braking system is divided into three working modes: emergency braking mode, slow braking mode and driving braking mode, and the control strategies of each mode are worked out respectively. Using the AMESim simulation platform, the simulation modeling of the gas, liquid subsystem, control strategy and crane in the braking process of the compound braking system is carried out, and the simulation model of the hydraulic hybrid electric crane during the braking process is obtained after the integration. The correctness of the theoretical analysis and the reasonableness of the control strategy are verified by the simulation analysis of three braking modes. The experimental scheme of the compound braking system was designed by using the modified hydraulic hybrid crane as the experimental prototype. Through the actual test of the experimental prototype, it is concluded that the application of compound braking technology in hydraulic hybrid electric crane can improve its braking reliability and energy utilization efficiency. The research content of this paper provides the relevant practical basis for the application of the compound braking technology in the hydraulic hybrid electric engineering vehicle, and has certain theoretical value and practical significance for the research and development of the hydraulic hybrid electric engineering vehicle product.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH21

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 夏云;;電子制動(dòng)系統(tǒng)應(yīng)用尚需時(shí)日[J];城市公共交通;2008年11期

2 ;制動(dòng)系統(tǒng)的維護(hù)哪些可以自己做[J];當(dāng)代汽車;2008年04期

3 ;吉利自主研發(fā)爆胎監(jiān)測與制動(dòng)系統(tǒng)[J];輪胎工業(yè);2008年03期

4 張永;;對駕駛安全至關(guān)重要的制動(dòng)系統(tǒng)[J];駕駛園;2011年03期

5 ;塑造校車安全基準(zhǔn)卓越的制動(dòng)系統(tǒng)不可或缺[J];汽車維修技師;2012年02期

6 張希望;楊正中;蔣清蓮;;宇通客車制動(dòng)系統(tǒng)改進(jìn)探究[J];客車技術(shù)與研究;2012年04期

7 劉麗英;;農(nóng)用車制動(dòng)系統(tǒng)的養(yǎng)護(hù)要點(diǎn)[J];農(nóng)機(jī)使用與維修;2013年07期

8 孫承東;;制動(dòng)系統(tǒng)真空加注法[J];汽車工藝;1987年05期

9 胡靜華;什么是汽車防抱制動(dòng)系統(tǒng)[J];汽車與配件;1994年04期

10 吳權(quán)暉,徐達(dá);汽車防抱制動(dòng)系統(tǒng)的應(yīng)用及發(fā)展[J];武漢汽車工業(yè)大學(xué)學(xué)報(bào);1999年01期

相關(guān)會(huì)議論文 前10條

1 宋進(jìn)源;何小陽;;汽車防抱制動(dòng)系統(tǒng)控制方法的仿真分析[A];2007系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年

2 陳玉平;;乘用車制動(dòng)系統(tǒng)設(shè)計(jì)校核方法[A];創(chuàng)新裝備技術(shù) 給力地方經(jīng)濟(jì)——第三屆全國地方機(jī)械工程學(xué)會(huì)學(xué)術(shù)年會(huì)暨海峽兩岸機(jī)械科技論壇論文集[C];2013年

3 楊武雙;;基于matlab/simulink制動(dòng)系統(tǒng)匹配分析[A];“廣汽豐田杯”廣東省汽車行業(yè)第七期學(xué)術(shù)會(huì)議論文集[C];2013年

4 徐秦;周建國;;乘用車真空伺服制動(dòng)系統(tǒng)方案[A];創(chuàng)新裝備技術(shù) 給力地方經(jīng)濟(jì)——第三屆全國地方機(jī)械工程學(xué)會(huì)學(xué)術(shù)年會(huì)暨海峽兩岸機(jī)械科技論壇論文集[C];2013年

5 陳建德;謝磊;;重載貨車制動(dòng)系統(tǒng)配置研究[A];實(shí)踐 開拓 創(chuàng)新——2008年貨車技術(shù)發(fā)展學(xué)術(shù)研討會(huì)論文匯編[C];2008年

6 王強(qiáng);龔利全;魏q,

本文編號:2411091


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/2411091.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f8ff4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com