天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)電工程論文 >

超高壓液壓脈沖波形的產(chǎn)生與應(yīng)用

發(fā)布時(shí)間:2018-12-20 08:21
【摘要】:液壓系統(tǒng)由于其功率重量比大、響應(yīng)速度快、控制性能好、可實(shí)現(xiàn)過(guò)載保護(hù)等優(yōu)點(diǎn)而廣泛應(yīng)用于汽車(chē)、工程機(jī)械、農(nóng)業(yè)機(jī)械和國(guó)防等諸多領(lǐng)域。液壓系統(tǒng)在工作過(guò)程中,由于液壓閥的開(kāi)閉或換向?qū)е掠鸵毫鲃?dòng)的方向迅速改變或突然停止流動(dòng),在流動(dòng)液體和運(yùn)動(dòng)部件的慣性下,油液瞬間被壓縮,系統(tǒng)壓力出現(xiàn)瞬間上升,產(chǎn)生液壓脈沖。通常情況下,這種瞬間上升的壓力峰值可達(dá)正常壓力的若干倍,從而給液壓系統(tǒng)帶來(lái)不利影響甚至災(zāi)難性后果。因此,為了提高液壓系統(tǒng)的可靠性,需要對(duì)液壓元件進(jìn)行脈沖試驗(yàn),而脈沖試驗(yàn)的關(guān)鍵是產(chǎn)生符合標(biāo)準(zhǔn)的液壓脈沖波形。液壓系統(tǒng)近年來(lái)朝著高壓大流量方向發(fā)展,也對(duì)液壓脈沖波形產(chǎn)生系統(tǒng)提出了更高的要求。由于超高壓液壓脈沖波形產(chǎn)生系統(tǒng)涉及超高壓、大流量的電液伺服控制,對(duì)于超高壓液壓脈沖波形產(chǎn)生系統(tǒng)的研究不僅能應(yīng)用于液壓元件的脈沖試驗(yàn),也有助于推動(dòng)相關(guān)領(lǐng)域理論、技術(shù)和裝備的發(fā)展。論文以超高壓液壓脈沖波形產(chǎn)生系統(tǒng)為研究對(duì)象,以降低系統(tǒng)能耗、提高系統(tǒng)響應(yīng)速度與精度為目標(biāo),采用理論分析、計(jì)算機(jī)仿真、數(shù)學(xué)計(jì)算和試驗(yàn)研究相結(jié)合的方法,對(duì)超高壓液壓脈沖波形產(chǎn)生系統(tǒng)進(jìn)行了系統(tǒng)、深入的研究。論文提出了基于二級(jí)閥控制腔壓差反饋的超高壓液壓脈沖波形產(chǎn)生系統(tǒng),并研制了試驗(yàn)樣機(jī),可以產(chǎn)生方波、水錘波、正弦波等多種液壓脈沖波形;采用蓄能器對(duì)將負(fù)載在回程階段釋放的高壓油液能量吸收、儲(chǔ)存起來(lái),在下一個(gè)增壓沖程階段釋放,實(shí)現(xiàn)了超高壓液壓脈沖波形產(chǎn)生系統(tǒng)節(jié)能,使得系統(tǒng)總能耗降低;提出了模糊重復(fù)控制策略,并應(yīng)用于超高壓液壓脈沖波形產(chǎn)生系統(tǒng),并與PID控制系統(tǒng)進(jìn)行了對(duì)比,試驗(yàn)結(jié)果表明模糊重復(fù)控制器的采用明顯降低了系統(tǒng)跟隨誤差。有關(guān)各章內(nèi)容分述如下:第一章,從液壓脈沖的產(chǎn)生和廣泛存在出發(fā),闡述了液壓脈沖試驗(yàn)的重要性;總結(jié)了液壓脈沖試驗(yàn)標(biāo)準(zhǔn)的發(fā)展和國(guó)內(nèi)外研究現(xiàn)狀,論述了標(biāo)準(zhǔn)液壓脈沖波形的產(chǎn)生方法;介紹了超高壓液壓技術(shù)、液壓系統(tǒng)節(jié)能技術(shù)和液壓系統(tǒng)控制策略等相關(guān)技術(shù)進(jìn)展。第二章,提出了超高壓液壓脈沖波形產(chǎn)生系統(tǒng),建立了系統(tǒng)的數(shù)學(xué)模型和AMESim仿真模型;設(shè)計(jì)了采用復(fù)合節(jié)流窗口的液控閥,以實(shí)現(xiàn)不同閥芯開(kāi)口時(shí)的不同流量增益,可以滿(mǎn)足超高壓液壓脈沖波形產(chǎn)生系統(tǒng)負(fù)載變化范圍較大的需求;通過(guò)調(diào)節(jié)液控閥控制腔的壓差反饋增益,可以改變系統(tǒng)阻尼比,進(jìn)而實(shí)現(xiàn)對(duì)系統(tǒng)超調(diào)量的控制,提供了一種在方波輸入的情況下產(chǎn)生可控制的水錘波的方法,也為水錘波試驗(yàn)提供了理論依據(jù)。第三章,采用蓄能器對(duì)超高壓液壓脈沖波形產(chǎn)生系統(tǒng)進(jìn)行了節(jié)能設(shè)計(jì),以回收系統(tǒng)在回程階段的能量;分析計(jì)算了系統(tǒng)的功率、能耗、效率等,并與不采用蓄能器的液壓系統(tǒng)進(jìn)行了對(duì)比;采用蓄能器進(jìn)行節(jié)能設(shè)計(jì)后,系統(tǒng)總能耗降低15%,總效率從63%提高到76%;采用蓄能器的液壓系統(tǒng),對(duì)于階躍輸入、方波輸入、水錘波輸入信號(hào)的響應(yīng)也明顯優(yōu)于不采用蓄能器的系統(tǒng),尤其是響應(yīng)速度顯著提高;同時(shí)提供了一種直接跟隨輸入指令信號(hào)的脈沖波形產(chǎn)生方法,可以產(chǎn)生方波、水錘波等脈沖波形。第四章,通過(guò)分析超高壓液壓脈沖波形產(chǎn)生系統(tǒng)的數(shù)學(xué)模型,得出其開(kāi)環(huán)增益隨著負(fù)載變化而變化的特點(diǎn),因而采用傳統(tǒng)控制策略難以同時(shí)實(shí)現(xiàn)穩(wěn)定性及精確性的要求;在分析重復(fù)控制策略?xún)?yōu)劣的基礎(chǔ)上提出了模糊重復(fù)控制策略,并應(yīng)用于超高壓液壓脈沖波形產(chǎn)生系統(tǒng);采用模糊重復(fù)控制策略后系統(tǒng)跟隨誤差隨著循環(huán)次數(shù)的增加逐步減小,證明了系統(tǒng)的精確性、收斂性及穩(wěn)定性。第五章,將設(shè)計(jì)的節(jié)能型超高壓液壓脈沖產(chǎn)生系統(tǒng)應(yīng)用于軟管脈沖試驗(yàn),并研制了試驗(yàn)樣機(jī);對(duì)基于液控閥壓差反饋的液壓系統(tǒng)的超調(diào)量進(jìn)行了試驗(yàn)研究,證明了可以通過(guò)調(diào)節(jié)壓差反饋增益實(shí)現(xiàn)不同的超調(diào)量,進(jìn)而得到目標(biāo)波形;對(duì)于采用蓄能器的節(jié)能型超高壓液壓脈沖波形產(chǎn)生系統(tǒng)進(jìn)行了試驗(yàn)研究,證明蓄能器的采用明顯提高了系統(tǒng)的控制性能,同時(shí)提供了一種直接跟隨輸入指令信號(hào)的脈沖波形產(chǎn)生方法;對(duì)模糊重復(fù)控制策略與PID控制策略進(jìn)行了對(duì)比試驗(yàn)研究,試驗(yàn)結(jié)果表明,在循環(huán)10個(gè)周期以后,模糊重復(fù)控制系統(tǒng)對(duì)于正弦波輸入和水錘波輸入的周期綜合誤差分別比傳統(tǒng)PID控制系統(tǒng)降低了99%和87%,相對(duì)誤差分別降低了54%和40%。第六章,概況了全文的主要研究工作和成果,并展望了今后需要進(jìn)一步研究的工作和方向。
[Abstract]:The hydraulic system has the advantages of large power weight ratio, high response speed, good control performance, and can realize overload protection and the like, and is widely applied to many fields such as automobile, engineering machinery, agricultural machinery and national defense. During the working process, the hydraulic system changes or suddenly stops the flow in the direction of oil flow due to the opening and closing or reversing of the hydraulic valve, and under the inertia of the flowing liquid and the moving part, the oil is instantly compressed, and the pressure of the system is instantaneously increased to generate a hydraulic pulse. In general, such an instantaneous rise in pressure peaks may be several times the normal pressure, which adversely affects even catastrophic consequences for the hydraulic system. Therefore, in order to improve the reliability of the hydraulic system, it is necessary to perform a pulse test on the hydraulic element, and the key to the pulse test is to generate a hydraulic pulse waveform that meets the standard. The hydraulic system has been developed in the high-pressure and high-flow direction in recent years, and the higher requirements for the hydraulic pulse waveform generation system are also put forward. Because the high-pressure hydraulic pulse waveform generation system relates to the electro-hydraulic servo control of the ultra-high pressure and the large flow, the research of the high-pressure hydraulic pulse waveform generation system can not only be applied to the pulse test of the hydraulic element, but also can promote the development of the theory, the technology and the equipment in the relevant field. The paper takes an ultra-high pressure hydraulic pulse waveform generation system as a research object to reduce the energy consumption of the system, improve the response speed and the precision of the system, and combine the theory analysis, the computer simulation, the mathematical calculation and the test research. In this paper, a systematic and in-depth study of the high-pressure hydraulic pulse waveform generation system is carried out. In this paper, an ultra-high pressure hydraulic pulse waveform generation system based on the feedback of the differential pressure of the two-stage valve control chamber is proposed, and a prototype is developed, which can generate various hydraulic pulse waveforms such as square wave, water hammer wave and sine wave. the high-pressure oil energy absorbed by the load in the return phase is absorbed and stored by the energy accumulator, the high-pressure hydraulic pulse waveform generation system is released under the next boosting stroke stage, the total energy consumption of the system is reduced, and a fuzzy repeated control strategy is proposed, The system is applied to the high-pressure hydraulic pulse waveform generation system and compared with the PID control system. The results show that the use of the fuzzy repeat controller significantly reduces the following error of the system. The contents of the relevant chapters are as follows: Chapter one, starting from the generation and extensive existence of hydraulic pulse, expounds the importance of the hydraulic pulse test, summarizes the development of the hydraulic pulse test standard and the research situation at home and abroad, and discusses the generation method of the standard hydraulic pulse waveform; The technical progress of the high-pressure hydraulic technology, the energy-saving technology of the hydraulic system and the control strategy of the hydraulic system are introduced. In the second chapter, an ultra-high pressure hydraulic pulse waveform generation system is proposed, the mathematical model of the system and the AMESim simulation model are established, and a liquid-controlled valve with a compound throttling window is designed to realize different flow gains in different valve core openings. the system damping ratio can be changed by adjusting the differential pressure feedback gain of the liquid-controlled valve control cavity, The invention provides a method for generating a controllable water hammer wave in the case of a square wave input, and also provides a theoretical basis for the water hammer wave test. In the third chapter, the energy-saving design of the high-pressure hydraulic pulse waveform generation system is carried out by using the energy accumulator, so as to recover the energy of the system in the return phase, and the power, energy consumption and efficiency of the system are calculated and compared with the hydraulic system without the accumulator. With the energy-saving design of the energy accumulator, the total energy consumption of the system is reduced by 15%, the total efficiency is increased from 63% to 76%, and the hydraulic system with the energy accumulator is also obviously superior to the system without the energy accumulator for the response of the step input, the square wave input and the water hammer wave input signal. in particular, that response speed is obviously improve; meanwhile, a pulse waveform generation method which directly follow the input command signal is provided, and a pulse waveform such as a square wave and a water hammer wave can be generated. In the fourth chapter, through the analysis of the mathematical model of the high-pressure hydraulic pulse waveform generation system, it is concluded that the open-loop gain of the high-pressure hydraulic pulse waveform generation system is changed with the change of the load, so that the requirement of the stability and the accuracy is difficult to be realized at the same time by adopting the traditional control strategy; Based on the analysis of the advantages and disadvantages of the repetitive control strategy, a fuzzy repeat control strategy is proposed and applied to the high-pressure hydraulic pulse waveform generation system. The system following error is gradually reduced with the increase of the number of cycles after the fuzzy repeat control strategy is adopted, and the accuracy of the system is proved. convergence and stability. In chapter 5, the design of the energy-saving ultra-high pressure hydraulic pulse generation system is applied to the hose pulse test, and a test prototype is developed, and the overshoot of the hydraulic system based on the differential pressure feedback of the liquid-controlled valve is studied. It is proved that different overshoot can be realized by adjusting the feedback gain of the differential pressure, and then the target waveform is obtained; for the energy-saving ultra-high pressure hydraulic pulse waveform generation system with the energy accumulator, the system has been tested, and the adoption of the energy storage device has obviously improved the control performance of the system, the invention provides a method for generating a pulse waveform directly following an input instruction signal, The cycle synthesis error of the fuzzy repeat control system for sine wave input and water hammer wave input is lower by 99% and 87% than the traditional PID control system, and the relative error is reduced by 54% and 40%, respectively. In chapter 6, the main research work and results of the full text are introduced, and the work and direction of further research will be expected in the future.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TH137

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 胡紀(jì)濱;李小金;魏超;;液壓變壓器變壓比特性研究[J];北京理工大學(xué)學(xué)報(bào);2010年02期

2 顧海東;聶勇;;基于霍爾元件的液壓閥閥芯位移傳感器[J];傳感器與微系統(tǒng);2011年10期

3 高軍,黎輝,楊旭,王兆安;基于PID控制和重復(fù)控制的正弦波逆變電源研究[J];電工電能新技術(shù);2002年01期

4 李翠艷,張東純,莊顯義;重復(fù)控制綜述[J];電機(jī)與控制學(xué)報(bào);2005年01期

5 姜繼海;盧紅影;周瑞艷;于慶濤;郭娜;;液壓恒壓網(wǎng)絡(luò)系統(tǒng)中液壓變壓器的發(fā)展歷程[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年05期

6 邢彤;楊華勇;龔國(guó)芳;;多變量泵驅(qū)動(dòng)液壓系統(tǒng)比例與恒功率控制研究[J];工程機(jī)械;2008年06期

7 藍(lán)清國(guó);;超高壓水壓試驗(yàn)機(jī)設(shè)計(jì)技術(shù)探討[J];鋼管;1989年06期

8 孟慶鑫,劉賀平,王立權(quán),張嵐,弓海霞;自反饋式水下液壓沖擊器沖擊頻率的確定[J];哈爾濱工程大學(xué)學(xué)報(bào);2005年02期

9 劉賀平;羅阿妮;;水下液壓沖擊鏟關(guān)鍵技術(shù)分析[J];哈爾濱工程大學(xué)學(xué)報(bào);2006年06期

10 李軍;陳明;;基于虛擬儀器技術(shù)的飛機(jī)液壓脈沖試驗(yàn)系統(tǒng)[J];測(cè)控技術(shù);2007年03期

相關(guān)博士學(xué)位論文 前2條

1 馮衛(wèi)民;泵系統(tǒng)最優(yōu)閥調(diào)節(jié)策略及水錘控制方法研究[D];武漢大學(xué);2004年

2 鄭洪波;伺服直驅(qū)泵控液壓系統(tǒng)及其節(jié)能機(jī)理研究[D];廣東工業(yè)大學(xué);2012年

相關(guān)碩士學(xué)位論文 前6條

1 李杰;重復(fù)控制在散熱器脈沖疲勞試驗(yàn)壓力控制中的應(yīng)用研究[D];浙江大學(xué);2010年

2 具大源;魯棒重復(fù)控制及其在機(jī)油冷卻器脈沖疲勞試驗(yàn)臺(tái)中的應(yīng)用研究[D];浙江大學(xué);2012年

3 姚志軍;液壓脈沖試驗(yàn)臺(tái)的瞬態(tài)計(jì)算[D];西北工業(yè)大學(xué);2003年

4 羅梅偉;基于LabVIEW的超高壓液壓元件性能試驗(yàn)系統(tǒng)[D];山東大學(xué);2005年

5 張圣峰;挖掘機(jī)多學(xué)科聯(lián)合仿真研究與能耗分析[D];浙江大學(xué);2012年

6 張曉明;42MPa電液伺服壓力脈沖試驗(yàn)機(jī)的設(shè)計(jì)與研究[D];燕山大學(xué);2013年

,

本文編號(hào):2387717

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/2387717.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)d7937***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com