基于機(jī)器視覺的齒輪多參數(shù)測(cè)量技術(shù)研究
[Abstract]:As an indispensable part of mechanical transmission, gear has always been one of the main research objects of mechanical researchers and engineers. In this paper, machine vision and image processing techniques are applied to the measurement of gear parameter value and the deviation value of gear error detection item. The camera calibration technology, pixel level and sub-pixel level edge detection technology based on image grayscale gradient are analyzed in detail. Gear center positioning technology and gear important parameters and precision error detection item deviation measurement technology. The measurement and acquisition of several parameter values and error detection item deviation values of involute standard spur gear are realized by using MATLAB software on the experimental platform. Firstly, the hardware and software structure of the backlight gear parameter measurement platform are completed. A checkerboard calibration board is used to calibrate the camera's internal and external parameters, and the distortion in the image is corrected. Secondly, from the point of view of the existence and stability of pseudo-edge, the effect of various pixel level edge detection operators on gear image detection is compared, and the result diagram of LoG operator is used as the gear edge data graph to participate in the subsequent operation. On the basis of mathematical morphology theory, with the aim of obtaining complete and closed tooth profile, the edge of gear tooth is segmented from gear edge graph, and the clutter group in the image is deleted and the breakpoints on tooth profile are connected. Thirdly, according to the distribution rule of pixel gray value, an algorithm model is established to calculate the equivalent distance between the gray value of each equivalent pixel point and the edge center point in the normal direction of each edge center point. Based on the existing sub-pixel edge detection algorithms, the gray gradient of the equivalent pixel is interpolated in the normal direction of the edge point, and the interpolation result is fitted by the least square curve in the longitudinal direction. Finally, the method of sub-pixel coordinate value of each edge center point is obtained. Then, based on the analysis of the variation of the distance between the coarse position point and each pixel point on the tooth profile, the gear center was located with the center of gravity as the precision positioning datum, and the circular pixel point at the top of the tooth was selected as the positioning datum of the gear center. Comparing the results of three point method, two multiplication fitting method and the method in this paper, it is shown that the edge location method proposed in this paper is more accurate for gear center location. Finally, the measuring sequence of the main parameters is determined based on the gear design process, and several parameter values of the gear are obtained on the basis of the calibration results. By using the edge detection method and the previous interpolation fitting algorithm, the sub-pixel coordinates of the left and right tooth profile of the rear gear are obtained, and the gear pitch deviation is realized on this basis. Measurement of tooth profile deviation and common line deviation. According to the accuracy grade of experimental gear and the results of measurement, it is shown that the method of edge detection and gear parameter measurement proposed in this paper is feasible and effective.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周友行;喻思亮;張俏;周健;;基于導(dǎo)軌面圖像特征雷達(dá)圖的磨損狀況識(shí)別[J];中國(guó)機(jī)械工程;2015年05期
2 潘躍龍;顧寄南;鄭立斌;王紅梅;梁剛;;基于梯度算子的邊緣檢測(cè)方法的研究與改進(jìn)[J];制造業(yè)自動(dòng)化;2014年17期
3 吳曉;;面向LED芯片檢測(cè)與分選的機(jī)器視覺定位系統(tǒng)的開發(fā)[J];貴州大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期
4 謝華錕;;影像測(cè)量?jī)x的發(fā)展與點(diǎn)評(píng)[J];工具技術(shù);2011年08期
5 王文成;;基于機(jī)器視覺的齒輪參數(shù)測(cè)量系統(tǒng)設(shè)計(jì)[J];機(jī)械傳動(dòng);2011年02期
6 范爍;王立鼎;馬勇;;超精密齒輪齒距累積總偏差測(cè)量裝置的改進(jìn)及其自動(dòng)測(cè)量系統(tǒng)的設(shè)計(jì)[J];工業(yè)計(jì)量;2006年05期
7 王靜文;莫江濤;;汽車齒輪測(cè)量的應(yīng)用與發(fā)展[J];機(jī)械工人;2005年12期
8 謝華錕,段建英;從近幾屆中國(guó)國(guó)際機(jī)床展覽會(huì)看國(guó)內(nèi)外量具量?jī)x技術(shù)的發(fā)展[J];工具技術(shù);2004年11期
9 石照耀,費(fèi)業(yè)泰,謝華錕;齒輪測(cè)量技術(shù)100年——回顧與展望[J];中國(guó)工程科學(xué);2003年09期
10 郭寶安,吳序堂;漸開線圓柱齒輪參數(shù)的測(cè)量與計(jì)算[J];制造技術(shù)與機(jī)床;2002年07期
相關(guān)博士學(xué)位論文 前3條
1 余金棟;基于計(jì)算機(jī)微視覺的亞微米特征尺寸測(cè)量理論與實(shí)驗(yàn)研究[D];華南理工大學(xué);2014年
2 謝飛;基于計(jì)算機(jī)視覺的自動(dòng)光學(xué)檢測(cè)關(guān)鍵技術(shù)與應(yīng)用研究[D];南京大學(xué);2013年
3 張秀芝;基于計(jì)算機(jī)視覺的機(jī)械零件幾何量精密測(cè)量技術(shù)研究[D];吉林大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 李旭;自適應(yīng)光強(qiáng)變化的齒輪視覺測(cè)量技術(shù)研究[D];中北大學(xué);2016年
2 馬艷輝;基于機(jī)器視覺的工件尺寸檢測(cè)系統(tǒng)研究[D];長(zhǎng)春工業(yè)大學(xué);2016年
3 鄭立明;基于雙目視覺的工件尺寸測(cè)量方法研究[D];長(zhǎng)春工業(yè)大學(xué);2016年
4 張華軍;基于圖像處理的齒輪測(cè)量系統(tǒng)的研究[D];重慶大學(xué);2015年
5 楊丹;基于機(jī)器視覺的齒輪測(cè)量技術(shù)研究[D];沈陽(yáng)工業(yè)大學(xué);2015年
6 沈海珍;基于機(jī)器視覺的小模數(shù)齒輪輪廓信息提取算法研究[D];中國(guó)計(jì)量學(xué)院;2015年
7 李前坤;基于FPGA的微型零件尺寸檢測(cè)系統(tǒng)研究[D];重慶大學(xué);2014年
8 龔聰;基于機(jī)器視覺的高精度尺寸檢測(cè)方法與實(shí)現(xiàn)[D];廣東工業(yè)大學(xué);2014年
9 陳伯豪;基于機(jī)器視覺的二維復(fù)雜輪廓加工對(duì)象在線檢測(cè)系統(tǒng)研究[D];廣東工業(yè)大學(xué);2014年
10 張思佳;基于機(jī)器視覺的機(jī)械精度測(cè)量技術(shù)研究[D];沈陽(yáng)工業(yè)大學(xué);2014年
,本文編號(hào):2345866
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2345866.html