基于弧面凸輪的分度與擺動組合傳動裝置設(shè)計及動力學仿真
[Abstract]:The manufacturing industry embodies the level of productivity of a country. In the future, the upgrading of the manufacturing industry level cannot be separated from the development of the automatic production line. As the main part of the production line, the mechanical transmission part is bound to have a bearing on the speed and accuracy of its transmission. The degree of automation sets higher standards. Because of the requirement of production technology, the mechanical transmission part often needs to realize periodic indexing and swing action, but most of the existing transmission devices or mechanisms can only realize a single indexing or swinging movement, which need to be controlled separately. The transmission accuracy is not high, the whole transmission system is complex and does not meet the requirements of modern manufacturing integration, and will be gradually eliminated by the market. In view of the present situation, this paper presents a combined indexing and swinging transmission device for automatic production line based on the existing globoidal cam mechanism. The main contents are as follows: (1) the mathematical model of globoidal cam is established. Based on the characteristics of the straight line surface of the globoidal cam roller trace surface and the fact that the actual profile surface is equidistant with each other, the method of establishing the equation by using the equidistant surface method is proposed, and the general profile equation of the globoidal cam is established. The initial position of globoidal cam mechanism is analyzed, and the pressure angle and curvature characteristics are studied. Finally, an example is designed to prove the correctness of the established mathematical model. This method greatly simplifies the analysis and solution process of the globoidal cam profile. (2) A combined indexing and swinging transmission device based on the globoidal cam is designed. To replace a traditional intermittent mechanism or device that can only achieve a single motion. The structure of the device is designed. In order to meet the requirement of large swing angle between two processes in the production line, the globoidal swing cam mechanism with 180 擄swing angle is designed. Finally, the transmission material system of LED spectrometer is taken as a design example. The various dimensions of the device are calculated. (3) the existing modeling methods of the globoidal cam are summarized and analyzed, and the method based on the principle of equidistant surface is adopted to complete the modeling of the globoidal cam. After creating the solid model of each part of the transmission device, in the assembly environment of Pro/E, the various parts models that have already been established are assembled according to the previous design. In order to make the structure of the device more clear, the engineering drawings of the device are generated. (4) the dynamic simulation of the transmission device is carried out. First, the angular displacement, angular velocity and angular acceleration of the multi-rigid body model of the device are tested in ADAMS software. The simulation results show that the design and modeling process of the device is correct. Then the modal analysis of the transmission shaft is carried out in the ANSYS software, and the flexible process of the drive shaft is expounded, and the rigid-flexible coupling model of the device is established by importing the treated transmission shaft into the ADAMS. The angular acceleration at the output end is chosen as the research object for dynamic simulation to verify whether the device meets the design requirements.
【學位授予單位】:濟南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH132.47
【參考文獻】
相關(guān)期刊論文 前10條
1 邵世權(quán);;直動-擺動從動件凸輪機構(gòu)的分析設(shè)計[J];山東工業(yè)技術(shù);2016年11期
2 何海琴;李延平;常勇;;基于Pro/E和ADAMS的新型凸輪機構(gòu)建模及仿真分析[J];機械傳動;2016年02期
3 李軍營;楊術(shù)芳;;基于ADAMS的無碳小車的分析設(shè)計[J];農(nóng)業(yè)裝備與車輛工程;2015年06期
4 王軍政;趙江波;汪首坤;;電液伺服技術(shù)的發(fā)展與展望[J];液壓與氣動;2014年05期
5 袁偉;;單滾子大擺角弧面凸輪機械手的研究[J];新技術(shù)新工藝;2014年01期
6 李麗杰;;液壓傳動技術(shù)在機械驅(qū)動中應(yīng)用的探討[J];黑龍江科技信息;2013年25期
7 趙浩東;郭培全;曹艷科;;平行分度凸輪機構(gòu)剛?cè)狁詈蟿恿W仿真[J];機械設(shè)計;2012年01期
8 方代正;王貴成;;弧面凸輪分度機構(gòu)設(shè)計及建模方法研究[J];工程圖學學報;2010年02期
9 田亞平;康軍鳳;;阻尼對高速凸輪機構(gòu)動力學的影響分析[J];機械傳動;2010年03期
10 陳兆榮;陶波;;高精度弧面分度凸輪設(shè)計方法研究[J];工程圖學學報;2009年03期
相關(guān)博士學位論文 前2條
1 陳俊華;擺動從動件空間凸輪設(shè)計及非等徑加工研究[D];南昌大學;2011年
2 李蕾;滾珠型弧面分度凸輪機構(gòu)的動力學分析及其性能研究[D];山東大學;2011年
相關(guān)碩士學位論文 前10條
1 李永建;動作集成高速開箱弧面凸輪機構(gòu)的設(shè)計與研究[D];陜西科技大學;2014年
2 馬志平;弧面分度凸輪機構(gòu)剛?cè)狁詈蟿恿W研究[D];陜西科技大學;2014年
3 文明;可輸出多種分度數(shù)的弧面分度凸輪機構(gòu)的設(shè)計與仿真[D];陜西科技大學;2014年
4 王曉輝;基于剛?cè)狁詈夏P偷膱A柱分度凸輪機構(gòu)動力學分析[D];延邊大學;2012年
5 陳光杰;一種同軸式凸輪連桿組合分度機構(gòu)的設(shè)計與研究[D];天津大學;2012年
6 劉冬;雙凸輪聯(lián)動自動換刀裝置多體動力學仿真研究[D];大連理工大學;2010年
7 唐曉鵬;弧面分度凸輪機構(gòu)嚙合特性分析與仿真[D];西安理工大學;2010年
8 劉偉;間歇分度凸輪機構(gòu)的研究[D];江南大學;2009年
9 連善鏘;一種新型高速分度凸輪機構(gòu)的精度研究[D];天津大學;2008年
10 張紅杏;弧面分度凸輪的數(shù)控加工原理與方法[D];大連理工大學;2008年
,本文編號:2332641
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2332641.html