壓電纖維驅(qū)動型擺動式壓電泵的設(shè)計(jì)及試驗(yàn)研究
[Abstract]:In this paper, a piezoelectric fiber-driven oscillating piezoelectric pump is proposed in combination with a fish-tail piezoelectric pump and a piezoelectric fiber composite (MFC), which has the advantages of simple structure, no noise, no reflux and the like. Some tentative work has been done on the development of piezoelectric pump and the application of piezoelectric fiber. The research contents of this paper mainly include the following aspects: the piezoelectric fiber is bonded to the bronze base plate to form the driver adopted in this paper. The relation between the curvature of the piezoelectric fiber driver and the thickness and elastic modulus of the piezoelectric fiber driver is analyzed by using the classical laminated plate theory, and the working model diagram of the oscillating piezoelectric pump is established, the working principle of the oscillating piezoelectric pump is analyzed, and the theoretical flow rate is derived. Based on the statics analysis of piezoelectric fiber and piezoelectric fiber driver, the working mechanism of piezoelectric fiber is analyzed, and the change law of maximum amplitude of piezoelectric fiber driver with substrate thickness is obtained: with the increase of the thickness of the substrate, the maximum amplitude of the driver decreases gradually; Modal analysis of the piezoelectric fiber driver is carried out to obtain the first-order mode shape and the natural frequency of the piezoelectric fiber driver, and the vibration mode of the piezoelectric fiber driver is determined to be suitable as the driving mode of the oscillating piezoelectric pump. A piezoelectric fiber driver test and test system was constructed. The first order natural frequency and the maximum amplitude of the piezoelectric fiber driver bonded to different thickness substrates were measured. The experimental results show that as the thickness of the substrate increases, the natural frequency of the piezoelectric fiber driver increases gradually. The results show that the deformation of the piezoelectric fiber driver increases gradually from the fixed end to the free end, the tail warp state and the simulation result agree with each other. In general, when the substrate material is the same, the smaller the substrate thickness, the larger the overall amplitude of the piezoelectric fiber driver. In this paper, we designed a swing type piezoelectric pump with left inlet and right exit, left inlet and right outlet. The simulation software was used to analyze the flow and solid coupling of fluid and piezoelectric fiber driver in pump. The results showed that the flow rate was 458 ml/ min, 68ml/ min, 263ml/ min, respectively. Therefore, the performance of the swing piezoelectric pump in the left-right-out structure mode is better, and the following research adopts the left-in right-out structure form, namely, the inlet and the outlet are positioned on the same straight line, the inlet is in front of the fixed end of the driver, and the outlet is positioned behind the free end of the driver. Based on the velocity profile and velocity vector diagram of 0T, 1/ 4T, 2/ 4T and 3/ 4T, the working process of the swing piezoelectric pump in the left-right-out structure is analyzed. The influence of the thickness of the driver board on the output flow of the oscillating piezoelectric pump is studied by simulating the distance between the pump outlet and the end of the piezoelectric fiber driver. The simulation results show that when the distance between the pump outlet and the piezoelectric fiber driver end is changed from 1mm to 5mm, the output flow drops sharply as the distance between the pump outlet and the piezoelectric fiber driver end is changed from 0. 2mm to 0. 6mm. With the increase of the thickness of the substrate, the output flow rate of the swing piezoelectric pump is gradually increased. A test prototype of a swing piezoelectric pump was developed, and a piezoelectric pump test system was built. Five main parameters (pump outlet and driver end distance, driver substrate thickness, flexible tail length and outlet diameter) affecting the performance of the oscillating piezoelectric pump were obtained under the condition that other parameters were consistent. The inlet diameter) was tested. The test results show that when the distance between the pump outlet and the driver end gradually increases, the output flow of the swing piezoelectric pump drops sharply. When the distance is 1mm, the output flow rate is 158ml/ min. When the distance is increased to 550mm, the output flow rate of the swing piezoelectric pump is reduced to 8. 6ml/ min. when the distance is more than 5mm, the flow rate is hardly detected; the thickness of the substrate is changed from 0.2mm to 0.6mm, and the output flow rate of the swing piezoelectric pump is gradually increased when the distance is 0. 1mm; when the length of the flexible tail is changed from 2mm to 6mm, The output flow of the swing type piezoelectric pump decreases with the increase of the length of the flexible tail, and the flow rate of the swing type piezoelectric pump reaches the maximum value of 321ml/ min when the length of the flexible tail is 4mm; as the diameter of the outlet increases, the flow rate of the oscillating piezoelectric pump is reduced firstly, and the outlet diameter is 7mm, The output performance of the oscillating piezoelectric pump is optimal, the maximum output flow rate is 458ml/ min, and the influence of the inlet diameter on the output flow rate of the oscillating piezoelectric pump is not obvious.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH38
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 闞君武,楊志剛,程光明;壓電泵的現(xiàn)狀與發(fā)展[J];光學(xué)精密工程;2002年06期
2 焦小衛(wèi),黃衛(wèi)清,趙淳生;壓電泵技術(shù)的發(fā)展及其應(yīng)用[J];微電機(jī)(伺服技術(shù));2005年05期
3 曾平;林敬國;程光明;楊志剛;吳博達(dá);劉國君;;整體開啟閥微型壓電泵實(shí)驗(yàn)研究[J];壓電與聲光;2006年05期
4 程光明;李鵬;楊曉冬;闞君武;;主動閥壓電泵的設(shè)計(jì)[J];排灌機(jī)械;2007年05期
5 何秀華;蔣權(quán)英;張睿;楊嵩;;被動閥壓電泵的動力學(xué)模型及其求解[J];排灌機(jī)械;2007年06期
6 王曉偉;劉建亭;路計(jì)莊;劉安;;Y形流管無閥壓電泵結(jié)構(gòu)特性探析[J];煤礦機(jī)械;2008年06期
7 何秀華;張睿;楊嵩;鄧許連;蔣權(quán)英;;V型無閥壓電泵的流場分析[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2008年10期
8 賀琳;紀(jì)秀;鄭文;楊志剛;;新型金屬閥在小型壓電泵中的應(yīng)用[J];壓電與聲光;2011年01期
9 孫靜;魯海龍;;微型主被動閥結(jié)合式壓電泵的試驗(yàn)研究[J];科技創(chuàng)新與應(yīng)用;2014年11期
10 李軍,吳博達(dá),程光明,楊志剛;收縮管/擴(kuò)張管型無閥壓電泵的工作原理[J];壓電與聲光;2000年06期
相關(guān)會議論文 前9條
1 孫健;孫啟健;劉彥菊;冷勁松;;一種基于柔性放大機(jī)構(gòu)的壓電疊堆泵設(shè)計(jì)[A];復(fù)合材料:創(chuàng)新與可持續(xù)發(fā)展(下冊)[C];2010年
2 黃俊;張建輝;;“Y”錐組合流管無閥壓電泵的原理與實(shí)驗(yàn)驗(yàn)證[A];Proceedings of the 2010 Symposium on Piezoelectricity,Acoustic Waves and Device Applications[C];2010年
3 劉漢旭;張鐵民;;雙腔同步驅(qū)動無閥大流量壓電泵有限元分析[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國農(nóng)業(yè)工程學(xué)會學(xué)術(shù)年會論文集第一分冊[C];2005年
4 袁又春;黃衛(wèi)清;趙淳生;;收縮/擴(kuò)張管型無閥壓電泵泵腔流體仿真[A];第十一屆中國小電機(jī)技術(shù)研討會論文集[C];2006年
5 胡笑奇;張建輝;黃毅;夏齊宵;黃衛(wèi)清;;一種仿生型無閥壓電泵的研究[A];第十屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集(2011)下冊[C];2011年
6 王亮;張建輝;胡笑奇;王克;;擺動振子參數(shù)與尾鰭式無閥壓電泵工作能力關(guān)系的實(shí)驗(yàn)研究[A];第十屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集(2011)下冊[C];2011年
7 皋路;張建輝;胡笑奇;黃毅;;壓電雙晶片結(jié)構(gòu)的仿尾鰭式無閥泵改進(jìn)研究[A];第十屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集(2011)下冊[C];2011年
8 黃合成;孫洪昌;馬苑學(xué);;一種矩形壓電振子式主動閥壓電泵的研究[A];創(chuàng)新驅(qū)動,,加快戰(zhàn)略性新興產(chǎn)業(yè)發(fā)展——吉林省第七屆科學(xué)技術(shù)學(xué)術(shù)年會論文集(上)[C];2012年
9 高建民;唐為奇;;新型無閥微壓電泵的微流場仿真及設(shè)計(jì)[A];農(nóng)業(yè)機(jī)械化與新農(nóng)村建設(shè)——中國農(nóng)業(yè)機(jī)械學(xué)會2006年學(xué)術(shù)年會論文集(下冊)[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 記者王華楠;我國研發(fā)成功壓電精密驅(qū)動技術(shù)[N];中國技術(shù)市場報(bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 吳麗萍;扁錐腔無閥壓電泵理論與實(shí)驗(yàn)研究[D];吉林大學(xué);2008年
2 董景石;微型精密壓電泵設(shè)計(jì)理論及其應(yīng)用技術(shù)研究[D];吉林大學(xué);2012年
3 劉勇;輪式閥微型壓電泵的設(shè)計(jì)理論及試驗(yàn)研究[D];吉林大學(xué);2012年
4 姜德龍;多腔串聯(lián)壓電泵結(jié)構(gòu)設(shè)計(jì)及關(guān)鍵技術(shù)研究[D];吉林大學(xué);2013年
5 吳越;壓電泵動力學(xué)分析與優(yōu)化設(shè)計(jì)[D];吉林大學(xué);2013年
6 紀(jì)晶;半球缺阻流體無閥壓電泵的研究[D];南京航空航天大學(xué);2014年
7 黃俊;流阻差型無閥壓電泵的原理與試驗(yàn)研究[D];南京航空航天大學(xué);2013年
8 陳松;液體壓電泵中氣泡控制的機(jī)理、方法及效果研究[D];吉林大學(xué);2016年
9 楊嵩;基于附壁效應(yīng)的新型無閥壓電泵[D];江蘇大學(xué);2015年
10 陳建;基于振動濾波器的壓電泵研究[D];中國科學(xué)技術(shù)大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 李立安;多腔串聯(lián)壓電泵的設(shè)計(jì)及其在直線馬達(dá)中的試驗(yàn)研究[D];吉林大學(xué);2009年
2 楊嵩;基于數(shù)值模擬的三通擴(kuò)散/收縮管無閥壓電泵設(shè)計(jì)及性能研究[D];江蘇大學(xué);2009年
3 張波;新型壓電泵的結(jié)構(gòu)設(shè)計(jì)及動態(tài)系統(tǒng)建模[D];哈爾濱工業(yè)大學(xué);2008年
4 董景石;懸臂梁閥壓電泵理論及應(yīng)用研究[D];吉林大學(xué);2004年
5 路計(jì)莊;新型無閥壓電泵開發(fā)與壓電泵工作噪聲的研究[D];北京工業(yè)大學(xué);2007年
6 袁又春;收縮管/擴(kuò)張管型無閥壓電泵的研究[D];南京航空航天大學(xué);2006年
7 劉健;針對不同粘度液體壓電泵的設(shè)計(jì)與實(shí)驗(yàn)研究[D];吉林大學(xué);2008年
8 吳迪;液體混合用多入口壓電泵的研究[D];吉林大學(xué);2012年
9 朱佳煒;平面擴(kuò)散收縮管無閥壓電泵內(nèi)部流場瞬態(tài)特性理論分析及實(shí)驗(yàn)研究[D];江蘇大學(xué);2016年
10 王志軍;基于合成射流原理的無閥氣體壓電泵的仿真分析和試驗(yàn)研究[D];吉林大學(xué);2016年
本文編號:2300588
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2300588.html