天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 機電工程論文 >

雙向軸流泵的優(yōu)化設計及內(nèi)流特性研究

發(fā)布時間:2018-10-25 07:45
【摘要】:葉輪機械內(nèi)部三維流場的非定常流動機理及控制是學科研究熱點問題之一,雙向軸流泵作為兼顧排澇和灌溉的低揚程泵站的主要“心臟”部件,多為采用傳統(tǒng)二元方法設計的S型葉片,存在正、反向運行條件不同時能效較低的缺陷,反向時由于導葉起正預旋作用,且無后置導葉整流,其內(nèi)流結構中的逆壓梯度變化、附面層分離、大尺度回流等特殊復雜流動制約了綜合性能的提升,論文采用理論分析、數(shù)值模擬與試驗相結合的方法,圍繞非對稱翼型雙向軸流泵的優(yōu)化設計、內(nèi)流機理及主/被動流動控制技術、壓力脈動特性等方面內(nèi)容開展研究,取得如下成果:(1)基于保角變換法提出了一種低拱度圓弧翼型雙向葉片設計方法,通過儒可夫斯基變換建立低拱度圓弧翼型正反向速度環(huán)量、理論揚程的關系,通過改變?nèi)~柵幾何參數(shù)分配正反向性能,同時基于升力法設計常規(guī)S翼型雙向軸流泵開展對比研究,系統(tǒng)對比了兩種翼型葉片雙向軸流泵的時均流場和壓力脈動特性,通過在葉片、導葉表面網(wǎng)格上創(chuàng)建微小網(wǎng)格單元并監(jiān)測其平均壓力研究了S翼型雙向軸流泵正反向運行時葉片、導葉表面的壓力脈動變化規(guī)律,對比了正反向馬鞍區(qū)流動特性及葉頂間隙流動特性,開展兩個模型正反向不同安放角下的實驗研究。結果顯示,圓弧翼型葉片吸力面尾緣附近流體質(zhì)點的徑向運動較小,進出口邊脈動幅值更低,正反向效率較S翼型模型分別高3.5%和1.3%;葉片表面壓力脈動主要受導葉葉片數(shù)影響,主頻為導葉通過頻率,導葉表面壓力脈動的主頻為葉片轉動頻率;小流量下,正向時在1~2、4~5倍轉頻,反向時在0~2倍轉頻出現(xiàn)了較強的低頻脈動。(2)開展雙向軸流泵導葉改型設計研究,建立了彎導葉雙向軸流泵反向運行內(nèi)流場流動模型,引入直導葉以降低反向時葉片吸力面大沖角入流,基于Q等值面法研究了直導葉內(nèi)的旋渦結構及其非定常演變規(guī)律,通過改變翼型降低流動分離強度;分析了導葉一彎管相對位置變化對流場結構及性能的影響規(guī)律。結果表明,直導葉可消除反向時葉片前的正預旋,后置直導葉內(nèi)主要流動損失由吸力面附面層分離及脫落渦引起,合理選擇翼型可以降低流動分離強度;彎管會破壞上游流場的軸對稱分布,改變導葉各葉片的沖角。(3)構建了同時包含葉片、流道幾何參數(shù)的軸流泵(風機)參數(shù)化優(yōu)化平臺,改進現(xiàn)有軸流葉片優(yōu)化方法,提出一種包含實驗設計和速度梯度算法的軸流式葉片組合優(yōu)化方法,基于最優(yōu)拉丁超立方方法及序列二次規(guī)劃算法分別對葉片、流道進行優(yōu)化,通過增大空間步長加速收斂。較常規(guī)直接采用實驗設計或序列二次規(guī)劃算法優(yōu)化正向效率分別提高了3.07%和0.87%,采用擴散管減小了流道徑向壓差和流體周向旋轉速度,對葉片和流道優(yōu)化后正向效率較原模型分別提高了2.02%和2%。
[Abstract]:The unsteady flow mechanism and control of three-dimensional flow field in turbomachinery is one of the hot topics in academic research. Two-way axial flow pump is the main "heart" component of low lift pump station which takes both drainage and irrigation into account. Most of the S-type blades designed by traditional binary method have the defects of low energy efficiency in both positive and reverse operation conditions. In reverse, due to the prerotation of the guide vane and no rectification of the rear guide vane, the reverse pressure gradient changes in the internal flow structure. Special complex flow such as boundary layer separation and large scale reflux restrict the improvement of comprehensive performance. This paper uses the method of theoretical analysis, numerical simulation and test to optimize the design of asymmetric airfoil bidirectional axial flow pump. The internal flow mechanism, active / passive flow control technology, pressure fluctuation characteristics and so on are studied. The results are as follows: (1) based on the conformal transformation method, a design method for low arch circular arc airfoils is proposed. The relationship between forward and inverse velocity loop and theoretical head of low arch circular arc airfoil is established by means of Jokovsky transform. By changing the geometric parameters of cascade, the positive and negative performance is assigned. At the same time, based on the lifting method, the design of conventional S airfoil bidirectional axial flow pump is compared, and the time-averaged flow field and pressure pulsation characteristics of two kinds of airfoil bi-directional axial flow pumps are systematically compared, and the flow field and pressure pulsation characteristics of two kinds of airfoil bi-directional axial flow pumps are compared. A micro mesh cell was created on the surface of the guide vane and its average pressure was monitored. The variation of pressure fluctuation on the surface of the guide vane during the forward and backward operation of the S airfoil bidirectional axial flow pump was studied. The flow characteristics of the positive and backward saddle region and the tip clearance flow characteristics were compared. The experimental study of the two models was carried out under different forward and backward placement angles. The results show that the radial motion of fluid particles near the trailing edge of suction surface of circular arc airfoil is smaller, the pulsation amplitude of inlet and outlet edge is lower, and the positive and negative efficiency is 3.5% and 1.3% higher than that of S airfoil model, respectively. The pressure pulsation on the surface of the blade is mainly affected by the number of pieces of the guide blade, the main frequency is the passage frequency of the guide vane, the main frequency of the pressure pulsation on the surface of the guide vane is the rotating frequency of the blade; In reverse, a strong low frequency pulsation occurs at 0 ~ 2 times of rotation frequency. (2) the design of guide vane of bidirectional axial flow pump is studied, and the flow model of flow field in reverse operation of bending-guide vane bidirectional axial flow pump is established. In order to reduce the inlet flow of suction surface, the vortex structure and its unsteady evolution in the blade are studied based on the Q iso-surface method, and the flow separation strength is reduced by changing the airfoil. The influence of the relative position of the guide vane-elbow on the structure and performance of the flow field is analyzed. The results show that the direct guide vane can eliminate the positive prerotation in the front of the blade and the main flow loss is caused by the separation of the suction boundary layer and the shedding vortex. The reasonable selection of the airfoil can reduce the flow separation strength. The curved pipe will destroy the axial symmetrical distribution of the upstream flow field and change the angle of attack of the blades. (3) the parametric optimization platform of axial flow pump (fan) including the geometric parameters of blade and passage is constructed to improve the existing optimization method of axial flow blade. An axial flow blade combination optimization method including experimental design and velocity gradient algorithm is proposed. The blade and channel are optimized based on the optimal Latin hypercube method and sequential quadratic programming algorithm. The convergence is accelerated by increasing the space step size. Compared with the conventional direct experimental design or sequential quadratic programming algorithm, the forward efficiency is increased by 3.07% and 0.87%, respectively, and the radial pressure difference and the circumferential rotation velocity of the fluid are reduced by using the diffusion tube. Compared with the original model, the forward efficiency of blade and channel optimization is increased by 2.02% and 2% respectively.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TH312

【相似文獻】

相關期刊論文 前10條

1 閻詩武;;水流壓力脈動的譜分析及譜特征[J];水利水運科學研究;1981年03期

2 陳紅勛;;淺述水泵壓力脈動的測量[J];排灌機械;1986年05期

3 李昌琪,王科社;球形壓力脈動消除器的試驗研究[J];石油機械;1988年02期

4 黃濤;水流壓力脈動的特性及模型相似律[J];水利學報;1993年01期

5 何秀華;水泵壓力脈動的類型研究[J];排灌機械;1996年04期

6 劉陽;袁壽其;袁建平;;離心泵的壓力脈動研究進展[J];流體機械;2008年09期

7 袁壽其;薛菲;袁建平;湯躍;;離心泵壓力脈動對流動噪聲影響的試驗研究[J];排灌機械;2009年05期

8 姚志峰;王福軍;肖若富;嚴海軍;劉竹青;王敏;;離心泵壓力脈動測試關鍵問題分析[J];排灌機械工程學報;2010年03期

9 朱榮生;蘇保穩(wěn);楊愛玲;付強;王秀禮;;離心泵壓力脈動特性分析[J];農(nóng)業(yè)機械學報;2010年11期

10 全良桂;許海明;呂金喜;莊衛(wèi)將;;離心泵內(nèi)部非定常數(shù)值模擬與壓力脈動研究[J];熱能動力工程;2011年03期

相關會議論文 前10條

1 李海玲;李啟章;;淺析原型、模型渦帶壓力脈動幅值的相似問題[A];第十九次中國水電設備學術討論會論文集[C];2013年

2 曾云峰;;水輪機壓力脈動測試的設計[A];四川省電子學會傳感技術第九屆學術年會論文集[C];2005年

3 潘雨村;張懷新;;用大渦模擬方法研究湍流邊界層壁面壓力脈動[A];第十屆船舶水下噪聲學術討論會論文集[C];2005年

4 余峰;徐林;孟叢林;傅波;;壓力脈動加載試驗控制方法[A];面向航空試驗測試技術——2013年航空試驗測試技術峰會暨學術交流會論文集[C];2013年

5 劉樹紅;孫躍昆;左志鋼;劉錦濤;吳玉林;;原型水泵水輪機壓力脈動傳遞特性的數(shù)值模擬及分析[A];第十九次中國水電設備學術討論會論文集[C];2013年

6 陳曦;王國棟;胡婧;王先洲;馮大奎;;舵翼壓力脈動及流噪聲特性數(shù)值分析[A];第十一屆全國水動力學學術會議暨第二十四屆全國水動力學研討會并周培源誕辰110周年紀念大會文集(上冊)[C];2012年

7 盧岳良;柯兵;;雙壓力高壓泵關鍵技術研究[A];探索 創(chuàng)新 交流(第4集)——第四屆中國航空學會青年科技論壇文集[C];2010年

8 何成連;龔長年;方源;;混流式水輪機低負荷壓力脈動[A];水輪發(fā)電機組穩(wěn)定性技術研討會論文集[C];2007年

9 任輝;任革學;;航天器中的Pogo振動現(xiàn)象及其穩(wěn)定性分析[A];中國力學學會學術大會'2005論文摘要集(下)[C];2005年

10 邢科禮;馮玉;金俠杰;李慶;;基于AMESim/Matlab的電液伺服控制系統(tǒng)的仿真研究[A];第三屆全國流體傳動及控制工程學術會議論文集(第二卷)[C];2004年

相關博士學位論文 前6條

1 付大春;雙吸離心泵葉片交錯角度對壓力脈動影響研究[D];中國農(nóng)業(yè)大學;2017年

2 馬鵬飛;雙向軸流泵的優(yōu)化設計及內(nèi)流特性研究[D];華中科技大學;2016年

3 徐朝暉;高速離心泵內(nèi)全流道三維流動及其流體誘發(fā)壓力脈動研究[D];清華大學;2004年

4 楊孫圣;離心泵作透平的理論分析數(shù)值計算與實驗研究[D];江蘇大學;2012年

5 吳登昊;高效低振動循環(huán)泵設計與試驗研究[D];江蘇大學;2013年

6 周佩劍;離心泵失速特性研究[D];中國農(nóng)業(yè)大學;2015年

相關碩士學位論文 前10條

1 周增昊;基于流固耦合的蝸殼式混流泵壓力脈動及結構特性分析[D];哈爾濱工業(yè)大學;2015年

2 項高明;考慮流固耦合作用水泵水輪機泵模式下壓力脈動研究[D];哈爾濱工業(yè)大學;2015年

3 趙天揚;純水液壓系統(tǒng)管路瞬態(tài)壓力脈動過程研究[D];電子科技大學;2015年

4 劉冰;葉片水力非對稱性低比速離心泵特性研究[D];江蘇大學;2016年

5 郭雷;水泵水輪機多工況條件下壓力脈動研究[D];浙江大學;2016年

6 于定鵬;徑向直葉片燃油汽心泵的數(shù)值模擬及其應用研究[D];南京航空航天大學;2015年

7 馬彪;燈泡貫流式水輪發(fā)電機組穩(wěn)定性研究[D];蘭州理工大學;2016年

8 曾章美;混流式水輪機尾水管渦帶和壓力脈動數(shù)值計算分析[D];西華大學;2016年

9 楊亞飛;甲醇泵水力設計及壓力脈動特性研究[D];合肥工業(yè)大學;2017年

10 韓笑笑;基于時序效應的串并聯(lián)離心泵壓力脈動研究[D];合肥工業(yè)大學;2017年

,

本文編號:2293078

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/2293078.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶23ae5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com