基于隱馬爾科夫模型的軸承故障診斷方法研究
[Abstract]:Bearing is one of the most widely used and damaged parts in rotating machinery. Whether the bearing is in the normal working state directly affects the efficiency of mechanized production. When the bearing fails, the machine will produce abnormal vibration and noise. How to extract the eigenvalue of vibration fault signal and identify the fault type accurately is the key of fault diagnosis. In this paper, a method based on hidden Markov model is proposed to establish the bearing fault diagnosis model. The hidden Markov model has the characteristics of strong classification ability, few training samples and fast calculation speed. It is suitable for the analysis of non-stationary vibration signals. The hidden Markov model with corresponding number of states is trained to calculate the similarity probability and the corresponding fault type is determined by the similarity probability. The specific research contents are as follows: 1. Before analyzing the rolling bearing fault signal, the characteristic data of the bearing fault signal have been established by the Hidden Markov Model, and the feasibility of the Hidden Markov Model in the bearing fault diagnosis has been verified. 2. A fault identification method based on singular value decomposition (SVD) and Hidden Markov Model (hmm) is proposed. Firstly singular value decomposition is used to decompose the fault signal data of rolling bearing. The singular value matrix is vector quantized and sent to the established hidden Markov model for fault type identification. The effectiveness of singular value decomposition (SVD) combined with Hidden Markov Model (hmm) in bearing fault diagnosis is verified by experiments. 3. A fault identification method based on S-transform and Hidden Markov model is proposed, and a hidden Markov fault identification model is established. First, the fault signal data of rolling bearing is transformed by S transform, then the time spectrum matrix after S transform is decomposed by singular value, finally vector quantization is carried out and the fault type is identified in the established hidden Markov model. The effectiveness of S-transform combined with HMM in bearing fault diagnosis is verified by experiments. 4. 4. The vibration signal acquisition and analysis system is designed. The vibration sensor adopts the acoustic emission sensor PXR02, A / D conversion chip and uses AD9225, and STM32 as the main controller and installs the corresponding wireless transmission module to collect the vibration signal. The serial port transmission function of VS is used to receive the data. Finally, the vibration signal data is analyzed by Matlab to realize the real-time monitoring and fault diagnosis of the bearing running state.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH133.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張慶生;齊勇;侯迪;趙季中;;基于隱馬爾科夫模型的上下文感知活動(dòng)計(jì)算[J];西安交通大學(xué)學(xué)報(bào);2006年04期
2 李曉琴;仁文科;劉岳;;利用隱馬爾科夫模型識(shí)別蛋白質(zhì)折疊類型[J];北京工業(yè)大學(xué)學(xué)報(bào);2011年07期
3 羅志增;王占玉;;基于小波域隱馬爾科夫模型的肌電信號(hào)濾波[J];儀器儀表學(xué)報(bào);2010年11期
4 劉曉飛;邸書靈;;基于隱馬爾科夫模型的文本分類[J];石家莊鐵道大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
5 苗強(qiáng),Viliam Makis;基于隱馬爾科夫模型的故障診斷系統(tǒng)研究[J];航空學(xué)報(bào);2005年05期
6 向東;劉虎;陳先橋;程艷芬;;半連續(xù)隱馬爾科夫模型脫機(jī)阿拉伯手寫識(shí)別[J];武漢理工大學(xué)學(xué)報(bào)(信息與管理工程版);2011年03期
7 邱英;謝鋒云;;基于小波包系數(shù)與隱馬爾科夫模型的刀具磨損監(jiān)測(cè)(英文)[J];機(jī)床與液壓;2014年12期
8 張潤(rùn)丹;王瑩瑩;;量子隱馬爾科夫模型參數(shù)學(xué)習(xí)研究[J];科技視界;2014年16期
9 趙靜;黃厚寬;田盛豐;納躍躍;;基于轉(zhuǎn)移和頻率特征的協(xié)議異常檢測(cè)[J];北京交通大學(xué)學(xué)報(bào);2009年05期
10 李珩,譚詠梅,朱靖波,姚天順;漢語(yǔ)組塊識(shí)別[J];東北大學(xué)學(xué)報(bào);2004年02期
相關(guān)會(huì)議論文 前8條
1 肖鏡輝;劉秉權(quán);;一種非時(shí)齊的隱馬爾科夫模型及其在音字轉(zhuǎn)換中的應(yīng)用[A];全國(guó)第八屆計(jì)算語(yǔ)言學(xué)聯(lián)合學(xué)術(shù)會(huì)議(JSCL-2005)論文集[C];2005年
2 劉文壯;李均利;;一種基于隱馬爾科夫模型的脫機(jī)手寫漢字識(shí)別方法[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年
3 彭子平;張嚴(yán)虎;潘露露;;隱馬爾科夫模型原理及其重要應(yīng)用[A];2008'中國(guó)信息技術(shù)與應(yīng)用學(xué)術(shù)論壇論文集(一)[C];2008年
4 王宏生;孫美玲;李家峰;;隱馬爾科夫模型在構(gòu)建語(yǔ)言模型中的應(yīng)用[A];創(chuàng)新沈陽(yáng)文集(A)[C];2009年
5 張勁松;戴蓓倩;郁正慶;王長(zhǎng)富;;漢語(yǔ)識(shí)別中隱馬爾科夫模型初始化的研究[A];第二屆全國(guó)人機(jī)語(yǔ)音通訊學(xué)術(shù)會(huì)議論文集[C];1992年
6 劉杰;梁曉輝;;基于Fused隱馬爾科夫模型的人體運(yùn)動(dòng)識(shí)別[A];第八屆和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2012)論文集CHCI[C];2012年
7 林晨;金蓓弘;龍震岳;陳海彪;;上下文感知的分布式事件分發(fā)研究[A];第18屆全國(guó)多媒體學(xué)術(shù)會(huì)議(NCMT2009)、第5屆全國(guó)人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2009)、第5屆全國(guó)普適計(jì)算學(xué)術(shù)會(huì)議(PCC2009)論文集[C];2009年
8 楊s,
本文編號(hào):2290127
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2290127.html