基于LabVIEW的軸承和齒輪故障診斷系統(tǒng)設(shè)計
[Abstract]:The continuous improvement of automation level increases the complexity of mechanical equipment. Rolling bearings and gears are indispensable devices in mechanical equipment. The failure of rolling bearings and gears will cause great losses in production and endanger the personal safety of operators more easily. Therefore, it is of great practical significance to study an effective fault diagnosis system for bearing and gear. Based on the time-domain characteristic analysis of bearing and gear fault signals, it is found that the kurtosis factor, peak factor, margin factor, waveform factor in dimensionless parameters and the root mean square in dimensionless parameters are found in this paper. The pulse factor is sensitive to the fault signal, so these parameters can be used as the time domain characteristic parameters of the rolling bearing and gear. Through Fourier transform and self-power spectrum analysis of the fault signal, the frequency range of the natural frequency and the edge frequency of the fault signal can be determined, which provides the basis for the subsequent filtering and the extraction of the characteristic frequency. For non-stationary vibration signal, time-frequency analysis is an effective means to process the signal. Therefore, this paper applies the method of wavelet packet resonance demodulation to decompose the fault signal, select the low frequency wavelet packet coefficient to reconstruct, and analyze the resonance demodulation of the reconstructed signal. The experimental results show that the method can find the characteristic frequency more accurately. At the same time, BP neural network is used for fault diagnosis. The time domain feature and fault feature frequency of the extracted fault signal are taken as the input of the neural network to identify and determine the fault types of bearing and gear automatically. Experiments show that the method is effective. A rotating machinery fault diagnosis system based on LabVIEW virtual instrument technology is developed in this paper. The diagnosis system mainly includes signal playback module, time domain feature extraction module, frequency domain feature analysis module, resonance demodulation feature extraction module based on wavelet packet and fault diagnosis system module based on BP neural network. The system can identify and diagnose fault signals, and has practicability and portability. The accuracy and stability of the fault diagnosis system are verified by experiments.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH133.3;TH132.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 喻洋洋;周鳳星;嚴(yán)保康;;基于LabVIEW的滾動軸承故障診斷系統(tǒng)[J];儀表技術(shù)與傳感器;2016年03期
2 唐立力;呂福起;;基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)滾動軸承故障診斷[J];機(jī)械設(shè)計與制造工程;2015年03期
3 王煥躍;;基于LabVIEW的滾動軸承故障智能診斷系統(tǒng)[J];價值工程;2014年35期
4 郭天宇;代中華;張志濤;范新剛;;基于LabVIEW平臺的信號實(shí)時采集與處理系統(tǒng)[J];聲學(xué)技術(shù);2014年06期
5 陳向民;于德介;李蓉;;齒輪箱復(fù)合故障振動信號的形態(tài)分量分析[J];機(jī)械工程學(xué)報;2014年03期
6 姜濤;袁勝發(fā);;基于改進(jìn)小波神經(jīng)網(wǎng)絡(luò)的滾動軸承故障診斷[J];華中農(nóng)業(yè)大學(xué)學(xué)報;2014年01期
7 周桂平;王宏;;小波包與Hilbert分析法在旋轉(zhuǎn)設(shè)備故障診斷中的應(yīng)用[J];組合機(jī)床與自動化加工技術(shù);2012年10期
8 郝剛;潘宏俠;;小波包降噪與HHT在齒輪箱滾動軸承中的故障診斷[J];礦山機(jī)械;2012年10期
9 李學(xué)東;張云;馬曉莉;;基于振動分析的滾動軸承故障診斷系統(tǒng)設(shè)計[J];儀表技術(shù)與傳感器;2012年08期
10 林近山;陳前;;基于非平穩(wěn)時間序列雙標(biāo)度指數(shù)特征的齒輪箱故障診斷[J];機(jī)械工程學(xué)報;2012年13期
相關(guān)博士學(xué)位論文 前3條
1 王金玉;抽油機(jī)齒輪箱故障診斷系統(tǒng)的研究[D];東北石油大學(xué);2015年
2 張超;基于自適應(yīng)振動信號處理的旋轉(zhuǎn)機(jī)械故障診斷研究[D];西安電子科技大學(xué);2012年
3 孟濤;齒輪與滾動軸承故障的振動分析與診斷[D];西北工業(yè)大學(xué);2003年
相關(guān)碩士學(xué)位論文 前6條
1 胡二猛;基于LabVIEW的齒輪箱故障診斷系統(tǒng)研究[D];南京信息工程大學(xué);2016年
2 趙鵬飛;基于LabVIEW的齒輪故障診斷系統(tǒng)設(shè)計[D];中北大學(xué);2016年
3 王磊;基于HHT與神經(jīng)網(wǎng)絡(luò)的旋轉(zhuǎn)機(jī)械故障診斷研究[D];南京航空航天大學(xué);2012年
4 叢林;機(jī)械故障診斷中的多頻率成分辨識方法[D];電子科技大學(xué);2011年
5 張震;基于小波神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)的齒輪箱故障診斷研究[D];燕山大學(xué);2010年
6 續(xù)媛君;基于Labview的齒輪箱故障診斷研究與應(yīng)用[D];中北大學(xué);2007年
,本文編號:2282644
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2282644.html