小波神經(jīng)網(wǎng)絡(luò)在滾動(dòng)軸承故障診斷中的應(yīng)用研究
[Abstract]:Bearing is the most commonly used part in mechanical equipment, and it is widely used, especially the rolling bearing plays more and more important role in the application. Similarly, in all kinds of bearing faults, the proportion of rolling bearing fault occupies more and more. With the development of the concept of industry 4.0, the important technical machinery and equipment in our country will be greatly developed, and the stability, accuracy, reliability and various economic indexes of the machinery and equipment are closely related to the bearing. Therefore, it is necessary to diagnose the fault of rolling bearing. The fault diagnosis of rolling bearing mainly includes five steps: signal measurement, feature extraction, status recognition, diagnosis analysis and decision intervention. Feature extraction and status recognition are the core of bearing fault diagnosis. At present, there are two kinds of fault diagnosis methods for rolling bearing: traditional diagnosis method and modern diagnosis algorithm. For example: impulse method, wavelet analysis, neural network, fuzzy theory, expert system and particle swarm optimization. Wavelet transform has better time-frequency local analysis ability, neural network has the function of dealing with complex multi-mode and associating, speculating and memorizing. Based on this, the research content of this paper is put forward. Firstly, the bearing vibration signal is filtered by wavelet transform, then the traditional soft and hard threshold function is optimized, a new threshold function is designed, and the rolling bearing is filtered by wavelet threshold. Due to the large difference between different eigenvalues and different samples of the same eigenvalue, it is necessary to normalize them. Then as the input of the neural network, the input features are identified by using the constructed neural network, and the diagnosis results show that, The wavelet threshold function constructed in this paper can effectively remove the noise signal and has a high recognition accuracy.
【學(xué)位授予單位】:河南工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH133.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王延松,李樹才,蔣鈺潔;滾動(dòng)軸承故障的快速診斷[J];林業(yè)機(jī)械與木工設(shè)備;1996年03期
2 張益純,劉振娟;滾動(dòng)軸承故障分析探討[J];內(nèi)燃機(jī)配件;2000年03期
3 秦愷,陳進(jìn),姜鳴,陳春梅;一種滾動(dòng)軸承故障特征提取的新方法——譜相關(guān)密度[J];振動(dòng)與沖擊;2001年01期
4 鄧長(zhǎng)春;;聲發(fā)射法在滾動(dòng)軸承故障識(shí)別中的應(yīng)用[J];試驗(yàn)技術(shù)與試驗(yàn)機(jī);2002年Z2期
5 任昭蓉;滾動(dòng)軸承故障的小波診斷法[J];機(jī)械制造與自動(dòng)化;2004年06期
6 陸爽,田野;滾動(dòng)軸承故障特征識(shí)別的時(shí)頻分析研究[J];機(jī)床與液壓;2005年06期
7 江涌;基于余弦調(diào)頻小波變換的滾動(dòng)軸承故障研究[J];機(jī)械設(shè)計(jì)與制造;2005年06期
8 程光友;;時(shí)域指標(biāo)在滾動(dòng)軸承故障診斷中的應(yīng)用[J];中國(guó)設(shè)備工程;2005年12期
9 陳洪軍;趙新澤;王延軍;;滾動(dòng)軸承故障試驗(yàn)臺(tái)的理論建模分析[J];四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年04期
10 李崇晟;滾動(dòng)軸承故障的非線性診斷方法[J];軸承;2005年05期
相關(guān)會(huì)議論文 前10條
1 張益純;;常見滾動(dòng)軸承故障診斷的技術(shù)探討[A];第十屆全國(guó)設(shè)備監(jiān)測(cè)與診斷技術(shù)學(xué)術(shù)會(huì)議論文集[C];2000年
2 劉玉林;;貨車滾動(dòng)軸承故障不分解診斷技術(shù)參數(shù)選擇與優(yōu)化探討[A];擴(kuò)大鐵路對(duì)外開放、確保重點(diǎn)物資運(yùn)輸——中國(guó)科協(xié)2005年學(xué)術(shù)年會(huì)鐵道分會(huì)場(chǎng)暨中國(guó)鐵道學(xué)會(huì)學(xué)術(shù)年會(huì)和粵海通道運(yùn)營(yíng)管理學(xué)術(shù)研討會(huì)論文集[C];2005年
3 楊積忠;左立建;;滾動(dòng)軸承故障診斷實(shí)例[A];設(shè)備監(jiān)測(cè)與診斷技術(shù)及其應(yīng)用——第十二屆全國(guó)設(shè)備監(jiān)測(cè)與診斷學(xué)術(shù)會(huì)議論文集[C];2005年
4 何斌;戚佳杰;;小波分析在滾動(dòng)軸承故障診斷中的應(yīng)用研究[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
5 李放寧;;峰值能量在滾動(dòng)軸承故障診斷中的應(yīng)用[A];第十屆全國(guó)設(shè)備監(jiān)測(cè)與診斷技術(shù)學(xué)術(shù)會(huì)議論文集[C];2000年
6 何斌;戚佳杰;;小波分析在滾動(dòng)軸承故障診斷中的應(yīng)用研究[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
7 張九軍;;常見滾動(dòng)軸承故障的簡(jiǎn)易診斷[A];2008年全國(guó)煉鐵生產(chǎn)技術(shù)會(huì)議暨煉鐵年會(huì)文集(上冊(cè))[C];2008年
8 李興林;;滾動(dòng)軸承故障診斷技術(shù)現(xiàn)狀及發(fā)展[A];2009年全國(guó)青年摩擦學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
9 唐海峰;陳進(jìn);董廣明;;信號(hào)稀疏分解方法在滾動(dòng)軸承故障診斷中的應(yīng)用[A];第十二屆全國(guó)設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2010年
10 高耀智;;高階統(tǒng)計(jì)量與小波分析相結(jié)合在滾動(dòng)軸承故障診斷中的應(yīng)用[A];2009年全國(guó)青年摩擦學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 美國(guó)明尼蘇達(dá)大學(xué)社會(huì)學(xué)博士 密西西比州立大學(xué)國(guó)家戰(zhàn)略規(guī)劃與分析研究中心資深助理研究員 陳心想;維護(hù)好創(chuàng)新的“神經(jīng)網(wǎng)絡(luò)硬件”[N];中國(guó)教師報(bào);2014年
2 盧業(yè)忠;腦控電腦 驚世駭俗[N];計(jì)算機(jī)世界;2001年
3 葛一鳴 路邊文;人工神經(jīng)網(wǎng)絡(luò)將大顯身手[N];中國(guó)紡織報(bào);2003年
4 中國(guó)科技大學(xué)計(jì)算機(jī)系 邢方亮;神經(jīng)網(wǎng)絡(luò)挑戰(zhàn)人類大腦[N];計(jì)算機(jī)世界;2003年
5 記者 孫剛;“神經(jīng)網(wǎng)絡(luò)”:打開復(fù)雜工藝“黑箱”[N];解放日?qǐng)?bào);2007年
6 本報(bào)記者 劉霞;美用DNA制造出首個(gè)人造神經(jīng)網(wǎng)絡(luò)[N];科技日?qǐng)?bào);2011年
7 健康時(shí)報(bào)特約記者 張獻(xiàn)懷;干細(xì)胞移植:修復(fù)受損的神經(jīng)網(wǎng)絡(luò)[N];健康時(shí)報(bào);2006年
8 劉力;我半導(dǎo)體神經(jīng)網(wǎng)絡(luò)技術(shù)及應(yīng)用研究達(dá)國(guó)際先進(jìn)水平[N];中國(guó)電子報(bào);2001年
9 ;神經(jīng)網(wǎng)絡(luò)和模糊邏輯[N];世界金屬導(dǎo)報(bào);2002年
10 鄒麗梅 陳耀群;江蘇科大神經(jīng)網(wǎng)絡(luò)應(yīng)用研究通過鑒定[N];中國(guó)船舶報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 葛慧敏;車輛滾動(dòng)軸承故障診斷建模及關(guān)鍵技術(shù)研究[D];江蘇大學(xué);2017年
2 郝騰飛;航空發(fā)動(dòng)機(jī)滾動(dòng)軸承故障的核方法智能識(shí)別技術(shù)研究[D];南京航空航天大學(xué);2014年
3 廖強(qiáng);約束獨(dú)立分量和多小波分析在滾動(dòng)軸承故障診斷中的應(yīng)用[D];電子科技大學(xué);2016年
4 曾鳴;基于凸包的模式識(shí)別方法及其在滾動(dòng)軸承故障診斷中的應(yīng)用[D];湖南大學(xué);2016年
5 王聰;基于稀疏表達(dá)的機(jī)械信號(hào)處理方法及其在滾動(dòng)軸承故障診新中的應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
6 王洪偉;航空發(fā)動(dòng)機(jī)滾動(dòng)軸承故障診斷與預(yù)測(cè)關(guān)鍵技術(shù)研究[D];南京航空航天大學(xué);2015年
7 于江林;滾動(dòng)軸承故障的非接觸聲學(xué)檢測(cè)信號(hào)特性及重構(gòu)技術(shù)研究[D];大慶石油學(xué)院;2009年
8 楊柳松;基于小波分析與神經(jīng)網(wǎng)絡(luò)滾動(dòng)軸承故障診斷方法的研究[D];東北林業(yè)大學(xué);2013年
9 從飛云;基于滑移向量序列奇異值分解的滾動(dòng)軸承故障診斷研究[D];上海交通大學(xué);2012年
10 趙協(xié)廣;基于小波變換和經(jīng)驗(yàn)?zāi)B(tài)分解的滾動(dòng)軸承故障診斷方法研究[D];山東科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 管慶磊;小波神經(jīng)網(wǎng)絡(luò)在滾動(dòng)軸承故障診斷中的應(yīng)用研究[D];河南工業(yè)大學(xué);2017年
2 李男;基于LMD樣本熵和貝葉斯網(wǎng)絡(luò)的滾動(dòng)軸承故障診斷方法[D];燕山大學(xué);2015年
3 李玉奎;基于非平穩(wěn)信號(hào)分析的滾動(dòng)軸承故障診斷研究[D];燕山大學(xué);2015年
4 卜勇霞;基于時(shí)頻分析方法的滾動(dòng)軸承故障診斷研究[D];昆明理工大學(xué);2015年
5 馬寶;基于KICA和LSSVM的滾動(dòng)軸承故障監(jiān)測(cè)及診斷方法[D];昆明理工大學(xué);2015年
6 馮春生;基于多源不確定信息融合的數(shù)控機(jī)床滾動(dòng)軸承故障診斷方法與實(shí)驗(yàn)研究[D];青島理工大學(xué);2015年
7 王天一;基于正交小波優(yōu)化閾值降噪方法的滾動(dòng)軸承故障診斷研究[D];哈爾濱工業(yè)大學(xué);2015年
8 宋耀文;基于振動(dòng)信號(hào)分析的滾動(dòng)軸承故障特征提取與診斷研究[D];中國(guó)礦業(yè)大學(xué);2015年
9 韓一村;基于多傳感器的滾動(dòng)軸承故障檢測(cè)研究[D];河南科技大學(xué);2015年
10 王秀娟;基于LMD的譜峭度算法在滾動(dòng)軸承故障診斷中的應(yīng)用研究[D];電子科技大學(xué);2014年
,本文編號(hào):2273776
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2273776.html