幾類碰撞振動(dòng)系統(tǒng)的分岔控制研究
[Abstract]:Collision vibration is a very common phenomenon in the field of mechanical engineering. On the one hand, due to the inherent discontinuity of the collision vibration system, complex bifurcation and chaos and other dynamic behaviors occur in the system. This nonlinear behavior bias is also one of the reasons leading to the instability or structural damage of the system. In engineering, it is usually active or through control. Force the system to avoid, delay, or eliminate this bifurcation phenomenon. On the other hand, for some production purposes, people begin to pay attention to how to actively utilize the nonlinear characteristics of the bifurcation to achieve the desired bifurcation characteristics by active design or control. Corresponding control methods are analyzed in detail for various kinds of codimension bifurcations, codimension bifurcations, edge-rubbing nonsmooth bifurcations and degenerate Neimark-Sacker bifurcations of a class of two-degree-of-freedom impact vibration systems. In this paper, the quasi-periodic collision design and bifurcation inverse control of periodic collision motion of an inertial impact-vibration blasting machine are studied. A two-parameter domain diagram of Neimark-Sacker bifurcation is obtained, and a stable quasi-periodic impact vibration is designed by choosing the appropriate system parameters with the central manifold-normal method. In this paper, a linear feedback control method is developed. The robust control parameter region of the system is obtained by using the explicit periodic doubling bifurcation critical criterion, and the stability of the doubling bifurcation solution is further analyzed by using the central manifold-normal method. The quasi-periodic collision motion of a three-degree-of-freedom high-dimensional two-sided collision vibration system with clearance is studied. The inverse control problems of the Neimark-Sacker bifurcation, the Pitchfork bifurcation and the Hopf-Hopf interacting bifurcation of the periodic collision motion are studied. The periodic solution of collision and the six-dimensional Poincare mapping are established. Generally, the eigenvalues of the corresponding Jacobian matrices of the six-dimensional mapping have no analytic expression. This makes the classical critical bifurcation criterion described by the eigenvalue properties have great limitation in determining the control gain. To overcome this limitation, the eigenvalue fraction of the six-dimensional mapping is given. The explicit critical criteria for the distribution condition, transversal condition and non-resonance condition are equivalent to the classical bifurcation criteria, but do not depend on the direct calculation of the eigenvalues of Jacobian matrices. Finally, based on the established criteria, the Poincar maps Neimark-Sacker scores of high-dimensional collision systems are achieved at specified parameters by using feedback control method. Bifurcation, Pitchfork bifurcation and Hopf-Hopf interacting bifurcation anti-control are studied. 3. Boundary-rubbing bifurcation of a two-degree-of-freedom vibration system with clearance impact is studied and its dynamic behavior is investigated experimentally. Based on the stability criterion, the stability of the rubbed track is further verified. An experimental platform of a two-degree-of-freedom impact vibration system with clearances is designed and constructed. The different clearance distances between the oscillator and the baffle plate are selected and the stability of the rubbed track is further verified. By adjusting the excitation frequency of the exciter, the experimental results reveal various periodic motions, edge-rubbing bifurcation phenomena and nonlinear dynamical behaviors of chaotic motions of the impact vibration system. 4. The anti-control problem of degenerate Neimark-Sacker bifurcation for a class of extended H_ non maps is studied. The linear control is obtained by using the explicit Neimark-Sacker bifurcation critical criterion. The control system of high-dimensional mapping is simplified to a two-dimensional planar mapping by the central manifold-normal method. Finally, a polynomial function nonlinear feedback controller is designed by using the degenerate Neimark-Sacker bifurcation theory of two-dimensional planar mapping proposed by Chenciner, and the degenerate Neimark-Sacker bifurcation of the system is realized actively. The correctness of theoretical analysis is verified by numerical simulation.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TH113.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 俞翔;楊慶超;楊愛波;李志興;;碰撞振動(dòng)系統(tǒng)動(dòng)力學(xué)分析[J];武漢理工大學(xué)學(xué)報(bào)(交通科學(xué)與工程版);2012年02期
2 謝建華,文桂林,肖建;兩自由度碰撞振動(dòng)系統(tǒng)分叉參數(shù)的確定[J];振動(dòng)工程學(xué)報(bào);2001年03期
3 李飛;丁旺才;;多約束碰撞振動(dòng)系統(tǒng)的粘滯運(yùn)動(dòng)分析[J];振動(dòng)與沖擊;2010年05期
4 劉艷云;徐偉;王亮;;多自由度碰撞振動(dòng)系統(tǒng)的位置控制方法研究[J];科學(xué)技術(shù)與工程;2012年28期
5 舒仲周;謝建華;;碰撞振動(dòng)的穩(wěn)定性[J];西南交通大學(xué)學(xué)報(bào);1985年03期
6 劉艷云;徐偉;黃冬梅;王亮;;雙邊約束的多自由度碰撞振動(dòng)系統(tǒng)的控制方法[J];火力與指揮控制;2013年11期
7 古志明;王樹國;楊昊;;一類雙自由度碰撞振動(dòng)系統(tǒng)的分岔與混沌分析[J];蘭州交通大學(xué)學(xué)報(bào);2012年01期
8 張繼業(yè),楊翊仁,曾京;單自由度自治系統(tǒng)的碰撞振動(dòng)分析[J];振動(dòng)與沖擊;1998年03期
9 唐華平,鄭吉兵;碰撞振動(dòng)系統(tǒng)中兩種混沌門檻值的判據(jù)[J];振動(dòng).測試與診斷;1999年02期
10 姜春霞;邊紅麗;趙琳燕;侍玉青;;一類摩擦碰撞振動(dòng)系統(tǒng)的周期振動(dòng)特性研究[J];蘭州交通大學(xué)學(xué)報(bào);2013年06期
相關(guān)會(huì)議論文 前10條
1 金棟平;胡海巖;;隨機(jī)碰撞振動(dòng)的映射[A];錢學(xué)森技術(shù)科學(xué)思想與力學(xué)論文集[C];2001年
2 韓維;胡海巖;金棟平;侯志強(qiáng);;斜碰撞振動(dòng)研究的若干進(jìn)展[A];首屆全國航空航天領(lǐng)域中的力學(xué)問題學(xué)術(shù)研討會(huì)論文集(下冊)[C];2004年
3 金棟平;韓維;胡海巖;;兩自由度斜碰撞振動(dòng)系統(tǒng)的理論和實(shí)驗(yàn)研究[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年
4 張有強(qiáng);王偉;丁旺才;;單自由度摩擦碰撞振動(dòng)系統(tǒng)的動(dòng)力學(xué)分析[A];第21屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅲ冊[C];2012年
5 樂源;謝建華;;對稱性碰撞振動(dòng)系統(tǒng)的余維二分岔[A];第六屆全國動(dòng)力學(xué)與控制青年學(xué)者學(xué)術(shù)研討會(huì)論文摘要集[C];2012年
6 樂源;謝建華;;具有雙側(cè)約束的多自由度碰撞振動(dòng)系統(tǒng)動(dòng)力學(xué)行為研究進(jìn)展[A];第九屆全國動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊[C];2012年
7 吳禹;朱位秋;;泊松白噪聲激勵(lì)的多自由度碰撞振動(dòng)系統(tǒng)的平穩(wěn)響應(yīng)[A];第九屆全國振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
8 韓維;胡海巖;金棟平;侯志強(qiáng);;雙擺與單側(cè)剛性約束面之間的斜碰撞振動(dòng)[A];第七屆全國非線性動(dòng)力學(xué)學(xué)術(shù)會(huì)議和第九屆全國非線性振動(dòng)學(xué)術(shù)會(huì)議論文集[C];2004年
9 肖化q,
本文編號:2224008
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2224008.html