天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)電工程論文 >

水動(dòng)比例注入泵性能參數(shù)研究

發(fā)布時(shí)間:2018-07-04 20:35

  本文選題:比例注入泵 + 動(dòng)網(wǎng)格 ; 參考:《江蘇大學(xué)》2017年碩士論文


【摘要】:比例注入泵是一種高精度、可調(diào)節(jié)的定量施肥裝置,比例可調(diào)、水力驅(qū)動(dòng)是其主要特點(diǎn)。目前對(duì)于比例注入泵的產(chǎn)品性能研究較多,但運(yùn)行機(jī)理和性能參數(shù)研究不足,無(wú)法為注入泵設(shè)計(jì)提供足夠的理論指導(dǎo),同時(shí)研發(fā)手段有限導(dǎo)致市場(chǎng)上的產(chǎn)品大多是仿制國(guó)外。因此,通過(guò)數(shù)值模擬方法研究和性能參數(shù)研究來(lái)建立系統(tǒng)的比例注入泵設(shè)計(jì)方法具有重要的學(xué)術(shù)意義和工程意義。本文在比例注入泵機(jī)理分析的基礎(chǔ)上編譯用戶自定義程序,采用流固耦合中的動(dòng)網(wǎng)格技術(shù)對(duì)其進(jìn)行數(shù)值模擬,通過(guò)實(shí)驗(yàn)驗(yàn)證了模擬方法的可行性和準(zhǔn)確性,通過(guò)分析注入泵的內(nèi)部流動(dòng)和活塞受力,研究進(jìn)出口直徑、進(jìn)口腔直徑、驅(qū)動(dòng)腔直徑、進(jìn)水閥口直徑、出水閥口直徑以及換向彈簧剛度對(duì)比例注入泵水力性能的影響;研究吸肥腔結(jié)構(gòu)參數(shù)對(duì)比例注入泵吸肥性能的影響。主要研究工作包括以下幾方面:1.結(jié)合比例注入泵運(yùn)行原理進(jìn)行驅(qū)動(dòng)活塞的力學(xué)分析,利用C語(yǔ)言和宏編譯UDF,采用數(shù)值方法對(duì)注入泵的運(yùn)行過(guò)程進(jìn)行模擬。進(jìn)行高速攝影實(shí)驗(yàn),對(duì)比模擬、實(shí)驗(yàn)結(jié)果驗(yàn)證模擬方法的可行性和準(zhǔn)確性,分析注入泵內(nèi)部流動(dòng)和受力。結(jié)果表明:驅(qū)動(dòng)活塞的運(yùn)動(dòng)特性是先加速再勻速,其第一、三表面受力較穩(wěn)定,第二表面受力是先減小或增大再趨于穩(wěn)定。在工作范圍內(nèi),模擬和實(shí)驗(yàn)平均流量的最大誤差為4.20%,活塞運(yùn)動(dòng)頻率最大誤差為20.95%,活塞運(yùn)動(dòng)規(guī)律基本相同,說(shuō)明模擬方法準(zhǔn)確可行。2.采用動(dòng)網(wǎng)格方法研究水力驅(qū)動(dòng)機(jī)構(gòu)結(jié)構(gòu)參數(shù)對(duì)比例注入泵水力性能的影響,結(jié)構(gòu)參數(shù)主要包括:進(jìn)出口直徑、進(jìn)口腔直徑、驅(qū)動(dòng)腔直徑、進(jìn)水閥口直徑和出水閥口直徑。同時(shí)通過(guò)實(shí)驗(yàn)研究換向彈簧剛度系數(shù)對(duì)水力性能的影響。結(jié)果表明:隨著進(jìn)出口直徑增大,平均流量和活塞運(yùn)動(dòng)頻率增大并趨于平穩(wěn),22mm時(shí)兩者都達(dá)到最大值;平均流量與進(jìn)口腔直徑成正比,隨著腔徑增大,活塞運(yùn)動(dòng)頻率升高并趨于平穩(wěn),流量脈動(dòng)削弱,71mm時(shí)流動(dòng)脈動(dòng)系數(shù)最小;隨著驅(qū)動(dòng)腔直徑增大,平均流量呈波動(dòng)式下降,流量脈動(dòng)逐漸增強(qiáng),100mm時(shí)脈動(dòng)程度最弱。活塞運(yùn)動(dòng)頻率減小并趨于穩(wěn)定;進(jìn)水閥口直徑增大導(dǎo)致平均流量呈線性遞增。活塞運(yùn)動(dòng)頻率增大并趨于穩(wěn)定,19mm時(shí)流量脈動(dòng)最小。平均流量和運(yùn)動(dòng)頻率都與出水閥口直徑成正比,12mm時(shí)流量脈動(dòng)最弱。換向彈簧剛度系數(shù)對(duì)比例注入泵水力性能影響不顯著,但剛度系數(shù)越小,其啟動(dòng)壓力越小,承壓能力越弱。3.搭建比例注入泵水力性能測(cè)試實(shí)驗(yàn)臺(tái),通過(guò)實(shí)驗(yàn)研究吸肥腔結(jié)構(gòu)參數(shù)對(duì)注入泵吸肥性能的影響。吸肥腔結(jié)構(gòu)參數(shù)包括壓差、進(jìn)口流量、吸肥腔直徑、配合公差以及單向閥彈簧剛度。結(jié)果表明:隨著壓差增大,注入泵吸肥量增大并趨于平緩,擬合出吸肥量、壓差以及吸肥比例的回歸模型,吸肥量與進(jìn)口流量成正比;吸肥腔直徑增大導(dǎo)致注入泵吸肥量迅速增大,但直徑較小的吸肥腔的吸肥效率較高;活塞墊圈與腔體過(guò)盈量為0.5mm時(shí)吸肥性能最優(yōu),過(guò)小或者過(guò)大的過(guò)盈量都會(huì)導(dǎo)致密封性變差。單向閥彈簧剛度在一定范圍內(nèi)不影響吸肥性能,但超過(guò)一定值后,注入泵失去吸肥功能。
[Abstract]:Proportional injecting pump is a kind of high precision and adjustable quantitative fertilization device, which is adjustable in proportion and hydraulic drive is its main characteristic. At present, there are many research on the product performance of the proportional injecting pump, but the research of operation mechanism and performance parameter is insufficient, and it can not provide sufficient theoretical guidance for the design of injection pump. At the same time, the limited research and development means are limited to the market. Most of the products are copied from abroad. Therefore, it is of great academic and engineering significance to establish the design method of proportional injection pump by numerical simulation method and performance parameter research. In this paper, the user custom program is compiled on the basis of the mechanism analysis of proportional injection pump, and the dynamic grid technology in fluid solid coupling is used in this paper. Through the numerical simulation, the feasibility and accuracy of the simulation method are verified by the experiment. Through the analysis of the internal flow and the piston force of the injection pump, the influence of the diameter of the inlet and outlet, the diameter of the cavity, the diameter of the driving cavity, the diameter of the inlet valve, the diameter of the inlet valve and the stiffness of the spring and the change of the spring stiffness on the hydraulic performance of the proportional injecting pump are studied. The main research work includes the following aspects: 1. combined with the operation principle of the proportional injection pump, the mechanical analysis of the driving piston is carried out. The C language and the macro compiled UDF are used to simulate the operation process of the injection pump. The high speed photography experiment, the comparison simulation and the experimental results are carried out. The feasibility and accuracy of the simulation method are verified and the internal flow and force of the injection pump are analyzed. The results show that the motion characteristics of the driving piston are first acceleration and then uniform speed, the first, third surface stress is more stable, the second surface stress is first reduced or increased and then tends to stability. The maximum error of the simulated and experimental average flow is 4.2 within the working model. 0%, the maximum error of piston motion frequency is 20.95%, and the motion law of the piston is basically the same. It shows that the simulation method is accurate and feasible.2. uses the dynamic grid method to study the influence of the hydraulic driving mechanism on the hydraulic performance of the proportional injecting pump. The structural parameters mainly include the diameter of the import and export, the diameter of the inlet, the diameter of the driving cavity, the diameter of the inlet valve mouth and the diameter of the inlet valve. The effect of the stiffness coefficient of the reversing spring on the hydraulic performance was studied by experiments. The results showed that the average flow rate and the piston motion frequency increased and tended to be stable with the increase of the inlet and outlet diameter. The average flow rate reached the maximum at 22mm, and the average flow rate was proportional to the direct diameter of the mouth. With the increase of the cavity diameter, the piston movement frequency was increased. With the increase of the flow fluctuation and the weakening of the flow pulse, the flow coefficient of the 71mm flow is the smallest. With the increase of the diameter of the driving cavity, the average flow is fluctuating, the flow pulsation increases gradually, the fluctuation degree is the weakest at 100mm. The piston motion frequency decreases and tends to be stable; the average flow of the inlet valve opening increases linearly and the piston movement frequency increases. The rate increases and tends to stabilize, the flow pulsation is the smallest at 19mm. The average flow and motion frequency are proportional to the diameter of the valve outlet, and the flow pulsation is the weakest at 12mm. The change of the stiffness coefficient of the reversing spring has no significant influence on the hydraulic performance of the proportional injecting pump, but the smaller the stiffness coefficient, the smaller the starting pressure, the weaker the capacity of.3. to build the pump water. The effect of the structure parameters of the suction chamber on the performance of the injection pump is investigated by the force performance test bench. The structure parameters of the suction chamber include the pressure difference, the inlet flow, the diameter of the suction cavity, the tolerance and the stiffness of the unidirectional valve spring. The results show that the amount of fertilizer absorption and the pressure difference of the injection pump increase with the increase of pressure difference, and the amount of fertilizer absorption and the pressure difference are fitted. As well as the regression model of the proportion of fertilizer absorption, the amount of fertilizer absorption is proportional to the inlet flow rate, and the increase of the diameter of the injection pump increases the amount of the injection pump rapidly, but the efficiency of the fertilizer suction is higher in the smaller diameter suction chamber, and the performance of the sucking is the best when the piston washer and the volume of the cavity are 0.5mm, and the oversize or excessive interference will result in the difference of the sealing property. The stiffness of the valve spring does not affect the performance of the fertilizer in a certain range, but after a certain value, the injection pump loses the function of absorbing fertilizer.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH38

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王君;宋永興;姜營(yíng);李強(qiáng);章大海;;基于結(jié)構(gòu)化動(dòng)網(wǎng)格的渦旋壓縮機(jī)內(nèi)部流場(chǎng)模擬[J];工程熱物理學(xué)報(bào);2016年02期

2 楊林林;張海文;韓敏琦;王成志;楊勝敏;;水肥一體化技術(shù)要點(diǎn)及應(yīng)用前景分析[J];安徽農(nóng)業(yè)科學(xué);2015年16期

3 袁壽其;李紅;王新坤;;中國(guó)節(jié)水灌溉裝備發(fā)展現(xiàn)狀、問(wèn)題、趨勢(shì)與建議[J];排灌機(jī)械工程學(xué)報(bào);2015年01期

4 王新坤;夏立平;高世凱;許鵬;;施肥泵活塞關(guān)鍵結(jié)構(gòu)參數(shù)對(duì)性能影響的數(shù)值模擬[J];排灌機(jī)械工程學(xué)報(bào);2014年01期

5 金曉宏;楊科;沈洋;;基于動(dòng)網(wǎng)格技術(shù)的理想液壓缸運(yùn)動(dòng)數(shù)值計(jì)算[J];機(jī)電工程;2013年12期

6 欒江;仇煥廣;井月;廖紹攀;韓煒;;我國(guó)化肥施用量持續(xù)增長(zhǎng)的原因分解及趨勢(shì)預(yù)測(cè)[J];自然資源學(xué)報(bào);2013年11期

7 嚴(yán)海軍;陳燕;初曉一;徐云成;王志鵬;;文丘里施肥器結(jié)構(gòu)參數(shù)優(yōu)化對(duì)吸肥性能的影響[J];排灌機(jī)械工程學(xué)報(bào);2013年02期

8 林言中;陳兵;徐旭;;徑向基函數(shù)插值方法在動(dòng)網(wǎng)格技術(shù)中的應(yīng)用[J];計(jì)算物理;2012年02期

9 郭生榮;盧岳良;;液壓能源系統(tǒng)壓力脈動(dòng)分析及抑制方法研究[J];液壓與氣動(dòng);2011年11期

10 葛如海;王桃英;許棟;臧綾;;基于動(dòng)網(wǎng)格和UDF技術(shù)的氣缸動(dòng)態(tài)特性研究[J];機(jī)床與液壓;2010年21期

相關(guān)博士學(xué)位論文 前3條

1 宋月超;柱塞泵流量脈動(dòng)測(cè)試方法和大范圍工況降噪結(jié)構(gòu)優(yōu)化的研究[D];浙江大學(xué);2013年

2 張斌;軸向柱塞泵的虛擬樣機(jī)及油膜壓力特性研究[D];浙江大學(xué);2009年

3 鄧斌;水壓軸向柱塞泵的特性研究與分析[D];西南交通大學(xué);2004年

相關(guān)碩士學(xué)位論文 前5條

1 楊大森;水動(dòng)比例注入泵運(yùn)動(dòng)分析及性能優(yōu)化[D];江蘇大學(xué);2016年

2 祁永斐;基于動(dòng)網(wǎng)格技術(shù)的穩(wěn)流器三維流場(chǎng)數(shù)值模擬研究[D];新疆農(nóng)業(yè)大學(xué);2013年

3 郭昌盛;基于動(dòng)網(wǎng)格的調(diào)壓閥流場(chǎng)模擬及閥芯運(yùn)動(dòng)分析[D];重慶大學(xué);2013年

4 吳賀賀;基于非結(jié)構(gòu)動(dòng)網(wǎng)格技術(shù)及運(yùn)動(dòng)物面粘流場(chǎng)數(shù)值計(jì)算方法研究[D];江蘇科技大學(xué);2012年

5 尹文波;可壓縮流體工作介質(zhì)軸向柱塞泵配流及瞬時(shí)流量仿真研究[D];蘭州理工大學(xué);2003年

,

本文編號(hào):2097349

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/2097349.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1766a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com