基于CFD的壓電驅(qū)動精密流量閥流場仿真分析
本文選題:壓電陶瓷 + 流場仿真分析 ; 參考:《南昌大學(xué)》2016年碩士論文
【摘要】:隨著社會的發(fā)展,在航空航天、生物工程、醫(yī)療器械等領(lǐng)域,對其控制系統(tǒng)也提出了體積更小、重量更輕、降低能耗、提高性能的要求,因此對超高壓、微流量精密控制系統(tǒng)的研究尤為重要。但在傳統(tǒng)的流量控制閥研究領(lǐng)域,原有的閥芯驅(qū)動器很難滿足需要。從而加快了對新的微流體驅(qū)動控制系統(tǒng)的研究并已有所成效。在智能材料領(lǐng)域,壓電陶瓷由于具有位移控制精度高、力輸出明顯、響應(yīng)快、功耗小和便于數(shù)字化等優(yōu)點(diǎn)被廣泛應(yīng)用于閥芯的驅(qū)動。本文以壓電陶瓷作為驅(qū)動元件,利用壓電陶瓷的逆壓電效應(yīng)產(chǎn)生的微位移來驅(qū)動閥芯運(yùn)動,從而實現(xiàn)對流量閥的精密控制來進(jìn)行研究。隨著三維建模軟件的成熟和計算機(jī)技術(shù)的應(yīng)用的迅速發(fā)展,利用數(shù)值計算方法來研究閥內(nèi)部流體的流場分布已經(jīng)能夠取得很好的效果。本文利用三維建模軟件建立閥的整體結(jié)構(gòu)和閥內(nèi)流體模型,運(yùn)用前處理軟件對流體模型進(jìn)行網(wǎng)格劃分,選用CFD軟件對閥的內(nèi)部流場進(jìn)行了仿真分析。首先,通過對不同閥芯半錐角和不同閥芯直徑的流體模型進(jìn)行流場仿真,得到了不同條件下的流場參數(shù)和流場分布規(guī)律,比較分析流體縱面的流場壓力云圖、速度矢量圖、湍動能云圖、跡線流量圖的變化情況,確定了閥芯的半錐角和直徑的數(shù)值。然后,根據(jù)閥內(nèi)部流體的流場仿真結(jié)果,對閥的結(jié)構(gòu)進(jìn)行改進(jìn),分析比較改進(jìn)前后的流場參數(shù)和流場分布狀況,有效的改善了流場的分布狀態(tài)和部分參數(shù),提高了閥的使用壽命。最后,對相同閥芯開口度不同進(jìn)出口壓差時的流場進(jìn)行分析比較,得到了進(jìn)出口壓差對閥內(nèi)流場參數(shù)和分布的影響規(guī)律,為壓電驅(qū)動精密流量閥的結(jié)構(gòu)設(shè)計改進(jìn)和合理選擇邊界條件提供了理論依據(jù)和參考。
[Abstract]:With the development of society, in the fields of aerospace, bioengineering, medical device and so on, the control system is required to be smaller in volume, lighter in weight, lower in energy consumption and better in performance. The research of micro-flow precision control system is particularly important. But in the traditional flow control valve research field, the original valve core driver is difficult to meet the needs. Thus, the research on the new micro-fluid drive control system has been accelerated and some results have been achieved. In the field of intelligent materials, piezoelectric ceramics have been widely used in the drive of valve core because of its high displacement control accuracy, obvious force output, fast response, low power consumption and easy digitization. In this paper, piezoelectric ceramic is used as the driving element, and the micro-displacement caused by the inverse piezoelectric effect of the piezoelectric ceramic is used to drive the movement of the valve core, thus the precise control of the flow valve is studied. With the maturity of 3D modeling software and the rapid development of computer technology, the numerical calculation method has been used to study the flow field distribution in the valve. In this paper, the whole structure of the valve and the fluid model in the valve are established by using three-dimensional modeling software, and the fluid model is meshed by pre-processing software, and the internal flow field of the valve is simulated and analyzed by using CFD software. First of all, through the flow field simulation of the fluid models with different core semi-cone angles and different spool diameters, the flow field parameters and flow field distribution laws under different conditions are obtained, and the flow field pressure cloud diagram and velocity vector diagram of the longitudinal plane of the fluid are compared and analyzed. The change of turbulent kinetic energy cloud diagram and trace flow chart is used to determine the half cone angle and diameter of the valve core. Then, according to the simulation results of the flow field inside the valve, the structure of the valve is improved, the flow field parameters and the flow field distribution are analyzed and compared before and after the improvement, and the distribution state and some parameters of the flow field are effectively improved. The service life of the valve is increased. Finally, the influence of inlet and outlet pressure difference on the flow field parameters and distribution is obtained by analyzing and comparing the flow field of the same valve core opening degree and different inlet and outlet pressure difference. The theoretical basis and reference are provided for the structure design improvement and reasonable selection of boundary conditions of piezoelectric actuated precision flow valve.
【學(xué)位授予單位】:南昌大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TH134
【相似文獻(xiàn)】
相關(guān)期刊論文 前9條
1 涂尚榮,張揚(yáng)軍,謝今明,楊勝,鄭孟偉;汽車外部流場仿真的復(fù)雜網(wǎng)格系統(tǒng)生成[J];汽車工程;2002年05期
2 于利剛;張燕;王杰光;;多層住宅廚房排煙道內(nèi)煙氣流場仿真研究[J];湖南工程學(xué)院學(xué)報(自然科學(xué)版);2010年02期
3 趙陽;鄭政寶;;基于流場仿真的多路閥流道結(jié)構(gòu)優(yōu)化[J];機(jī)電工程;2007年06期
4 劉耀林;張舜德;李華;;噴霧器噴嘴流場仿真研究[J];輕工機(jī)械;2008年01期
5 謝海波;傅新;楊華勇;陳虹;;典型微管道流場數(shù)值模擬與Micro-PIV檢測研究[J];機(jī)械工程學(xué)報;2006年05期
6 曹俊華;饒錫新;林立俊;林希玲;;制粉霧化器噴嘴的流場仿真研究[J];機(jī)械設(shè)計與制造;2013年07期
7 孫鵬文;王飛;閆金順;岳彩賓;趙玉柱;吳振宇;;基于DPM的城市生活垃圾臥式氣流分選流場仿真分析[J];內(nèi)蒙古工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2013年02期
8 孫達(dá)飛;盧文壯;薛海鵬;王浩;張林;左敦穩(wěn);;制備雙面大面積BDD電極的HFCVD設(shè)備流場仿真與結(jié)構(gòu)設(shè)計[J];金剛石與磨料磨具工程;2013年02期
9 ;[J];;年期
相關(guān)碩士學(xué)位論文 前4條
1 毛曉娥;濃縮風(fēng)能裝置流場仿真與結(jié)構(gòu)優(yōu)化[D];華北電力大學(xué);2015年
2 張公一;裂隙巖樣滲透試驗系統(tǒng)葉輪式攪拌池流場仿真及分析[D];中國礦業(yè)大學(xué);2015年
3 易健;基于CFD的壓電驅(qū)動精密流量閥流場仿真分析[D];南昌大學(xué);2016年
4 尚坦;秸稈揉絲機(jī)揉搓機(jī)構(gòu)內(nèi)流場仿真及流固耦合分析[D];西北農(nóng)林科技大學(xué);2014年
,本文編號:2080956
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2080956.html