自擺角式徑向柱塞泵配流沖擊及影響因素研究
本文選題:徑向柱塞泵 + 配流軸 ; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:高壓徑向柱塞泵中,配流軸上減振槽的包角角度和截面尺寸對(duì)泵的流量脈動(dòng)起重要作用,因此研究配流軸結(jié)構(gòu)對(duì)配流沖擊和流量脈動(dòng)的影響,是提高徑向柱塞泵壽命、改善其性能指標(biāo)的重要途徑。在考慮油液壓縮性和預(yù)升壓區(qū)減振槽油液倒灌的基礎(chǔ)上,根據(jù)軸配流式徑向柱塞泵的工作機(jī)理,以XDP1000自擺角式軸配流高壓(42MPa)徑向柱塞泵配流副的減振槽結(jié)構(gòu)為研究對(duì)象,建立徑向柱塞泵在預(yù)升壓區(qū)柱塞腔油液壓力隨轉(zhuǎn)子轉(zhuǎn)角變化的微分方程和泵出口理論瞬時(shí)流量的數(shù)學(xué)模型,分析三角形減振槽的最大截面邊長(zhǎng)及包角角度對(duì)配流沖擊和流量均勻性的影響。建立柱塞泵配流流道的三維模型,根據(jù)柱塞的運(yùn)動(dòng)形式分析獲得柱塞相對(duì)于轉(zhuǎn)子的徑向速度表達(dá)式,并對(duì)速度表達(dá)式進(jìn)行速度分解;考慮液壓油的可壓縮性條件下,編寫(xiě)柱塞相對(duì)于轉(zhuǎn)子做伸縮運(yùn)動(dòng)的UDF程序;運(yùn)用CFD動(dòng)網(wǎng)格技術(shù),對(duì)柱塞的剛體運(yùn)動(dòng)和柱塞壁面的變形進(jìn)行定義;在Fluent求解器中進(jìn)行非定常可壓縮流動(dòng)的流場(chǎng)模擬計(jì)算,與數(shù)學(xué)模型下的分析結(jié)果相互比較;分析流場(chǎng)中壓力、速度矢量分布,得到泵的流量曲線(xiàn),并計(jì)算流量脈動(dòng)率?偨Y(jié)數(shù)學(xué)模型和CFD流場(chǎng)仿真模型的分析結(jié)果,得到以下結(jié)論:(1)柱塞在預(yù)升壓區(qū)存在不排油現(xiàn)象,以及減振槽由于倒灌而引入柱塞腔的流量是高壓徑向柱塞泵形成流量脈動(dòng)的兩個(gè)重要因素。在考慮油液壓縮性與減振槽倒灌流量的情況下,徑向柱塞泵的流量脈動(dòng)率要大于原瞬時(shí)理論流量數(shù)學(xué)模型下得到的脈動(dòng)率。(2)三角形減振槽截面邊長(zhǎng)增大,預(yù)升壓時(shí)間相應(yīng)縮短,但會(huì)增大柱塞泵的流量脈動(dòng)率;增大減振槽包角角度能夠減小泵的流量脈動(dòng)率,但在預(yù)升壓區(qū)出現(xiàn)油液壓力升高不到排油壓力的現(xiàn)象;柱塞腔油液壓力需要滿(mǎn)足在預(yù)升壓區(qū)達(dá)到排油壓力、壓力梯度小的條件,否則會(huì)形成配流沖擊,產(chǎn)生振動(dòng)和噪聲。(3)減振槽的結(jié)構(gòu)參數(shù)同時(shí)影響柱塞腔油液的升壓過(guò)程和柱塞泵的流量均勻性:三角形減振槽截面邊長(zhǎng)取7.9mm、包角取14°時(shí)具有較小的壓力梯度和脈動(dòng)率;減振槽包角相同時(shí),半圓形減振槽相比三角形減振槽具有更小的結(jié)構(gòu)尺寸和流量脈動(dòng)率。(4)CFD模型的結(jié)果表明:柱塞泵出口油液壓力介于5MPa與42MPa之間時(shí),預(yù)升壓區(qū)均存在油液的倒灌現(xiàn)象,泄壓區(qū)均存在高壓油的回流現(xiàn)象;CFD流場(chǎng)仿真模型下得到的流量脈動(dòng)率與數(shù)學(xué)模型的結(jié)果相差3%,CFD模型與數(shù)學(xué)模型得到相互印證。
[Abstract]:In the high pressure radial piston pump, the angle and section size of the damping groove on the damper shaft play an important role in the flow pulsation of the pump. Therefore, it is an important way to improve the life of the radial piston pump and improve its performance index by studying the influence of the structure of the flow shaft on the flow shock and the flow pulsation. On the basis of the liquid inverted irrigation, according to the working mechanism of the axial flow radial piston pump, the differential equation of the oil pressure with the rotor angle in the plunger cavity of the radial piston pump in the pre boosted zone and the instantaneous flow rate of the pump outlet are established by using the vibration damping groove structure of the XDP1000 self pendulum axial piston pump (42MPa) radial piston pump. The mathematical model is used to analyze the influence of the maximum section length and angle of the triangle damper on the flow impact and the flow uniformity. The three-dimensional model of the flow passage of the plunger pump is established. The radial velocity expression of the piston relative to the rotor is obtained according to the movement form of the plunger, and the velocity expression is decomposed, and the hydraulic oil is considered. Under the compressibility condition, the UDF program of the plunger relative to the rotor is written, and the CFD dynamic grid technique is used to define the rigid body movement of the plunger and the deformation of the plunger wall. The flow field simulation of the unsteady compressible flow in the Fluent solver is compared with the analysis results under the mathematical model, and the flow field is analyzed. The flow curve of the pump is obtained and the flow pulsation rate is calculated. The results of the mathematical model and the simulation model of the CFD flow field are summed up. The following conclusions are obtained: (1) there is no oil discharge in the pre lift area and the flow rate of the plunger cavity is introduced into the plunger cavity due to the inversion of the plunger, and the flow pulsation is formed by the high-pressure radial piston pump. Two important factors. In the case of oil compressibility and the flow rate of the damper trough, the flow pulsation of the radial piston pump is higher than that of the original instantaneous theoretical flow mathematical model. (2) the length of the section of the triangular vibration reduction slot increases and the pre lift time is shortened, but it will increase the flow pulsation rate of the plunger pump; increase and decrease the flow rate of the plunger pump. The angle of the slot angle can reduce the flow pulsation rate of the pump, but the oil pressure rise in the pre lift area is not up to the oil discharge pressure; the hydraulic pressure of the plunger cavity needs to meet the condition that the oil pressure and the pressure gradient are small in the pre pressurizing area, otherwise the distribution impact, the production vibration and the noise will be formed. (3) the structural parameters of the vibration damping tank are simultaneously at the same time The rising pressure process of the plunger cavity and the uniformity of the flow rate of the plunger pump are: the length of the section of the triangle damping groove is 7.9MM, the pressure gradient and the pulsation rate are smaller when the angle of the package is 14 degrees. When the angle of the vibration damper is the same, the semi-circular vibration damper has smaller structure size and flow pulsation than the triangle damper. (4) the result table of the model of (4) Ming: when the pressure of the outlet of the plunger pump is between 5MPa and 42MPa, the flow of oil is inverted in the pre pressurized zone, and the reflux phenomenon of high pressure oil exists in the pressure relief area. The flow pulsation rate obtained under the simulation model of the CFD flow field is 3%, and the CFD model and the mathematical model are mutually corroborated.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH137.51
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊國(guó)來(lái);田麗紅;張友亮;朱禮浩;趙梅香;;大排量徑向柱塞泵主要結(jié)構(gòu)參數(shù)及流量脈動(dòng)研究[J];液壓氣動(dòng)與密封;2015年02期
2 艾超;孔祥東;劉勝凱;王光平;;徑向柱塞泵瞬時(shí)理論流量仿真研究[J];鍛壓技術(shù);2014年03期
3 楊華勇;張斌;徐兵;;軸向柱塞泵/馬達(dá)技術(shù)的發(fā)展演變[J];機(jī)械工程學(xué)報(bào);2008年10期
4 郜立煥;劉世亮;楊毅;柴玉東;雷萍;孫俊偉;;基于CFD的軸向柱塞泵配流盤(pán)仿真[J];液壓與氣動(dòng);2008年06期
5 李靜;徐兵;馬吉恩;;可壓縮流體介質(zhì)軸向柱塞泵流量脈動(dòng)仿真研究[J];機(jī)床與液壓;2008年05期
6 徐兵;馬吉恩;楊華勇;;液壓變壓器瞬時(shí)流量特性分析[J];機(jī)械工程學(xué)報(bào);2007年11期
7 諸葛輝;鄧斌;柯堅(jiān);;基于CFD的中壓柱塞泵流道優(yōu)化研究[J];流體傳動(dòng)與控制;2007年02期
8 楊國(guó)來(lái);王偉健;王連波;張守印;;低噪聲徑向柱塞泵的設(shè)計(jì)與研究[J];液壓與氣動(dòng);2007年02期
9 楊國(guó)來(lái);王偉健;張守印;趙亞風(fēng);;新型雙作用徑向柱塞泵的定子曲線(xiàn)設(shè)計(jì)及流量脈動(dòng)分析[J];機(jī)床與液壓;2006年03期
10 楊國(guó)來(lái);王偉健;張守印;盧X;;新型雙作用柱塞泵減振三角槽的研究[J];液壓與氣動(dòng);2006年01期
相關(guān)博士學(xué)位論文 前2條
1 裘信國(guó);端面配流徑向柱塞式液壓泵特性的研究[D];浙江工業(yè)大學(xué);2009年
2 馬吉恩;軸向柱塞泵流量脈動(dòng)及配流盤(pán)優(yōu)化設(shè)計(jì)研究[D];浙江大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 杜建西;新型軸配流式徑向柱塞泵動(dòng)態(tài)特性研究[D];太原科技大學(xué);2011年
2 楊長(zhǎng)安;節(jié)流孔流場(chǎng)特性分析及液壓泵減振槽研究[D];蘭州理工大學(xué);2009年
3 王偉健;低噪聲雙作用徑向柱塞泵的設(shè)計(jì)與研究[D];蘭州理工大學(xué);2006年
4 裘信國(guó);徑向柱塞式液壓泵受力分析及其配流機(jī)構(gòu)的研究[D];浙江工業(yè)大學(xué);2005年
,本文編號(hào):2058399
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2058399.html