齒輪傳動(dòng)磨損狀態(tài)靜電綜合監(jiān)測(cè)技術(shù)研究
本文選題:齒輪傳動(dòng) + 摩擦磨損 ; 參考:《南京航空航天大學(xué)》2016年博士論文
【摘要】:齒輪傳動(dòng)系統(tǒng)作為機(jī)械設(shè)備的關(guān)鍵部件,其性能退化或失效會(huì)影響整機(jī)性能甚至導(dǎo)致設(shè)備非計(jì)劃停機(jī),造成經(jīng)濟(jì)損失甚至人員傷亡。由于工業(yè)生產(chǎn)的需要,齒輪傳動(dòng)系統(tǒng)作為機(jī)械設(shè)備中重要的傳遞動(dòng)力部分常常需要在高速重載的條件下連續(xù)工作,因此其故障率一直居高不下,由于摩擦磨損而產(chǎn)生的故障和失效是引起系統(tǒng)嚴(yán)重事故的主要誘因之一,F(xiàn)有振動(dòng)、溫度等常規(guī)監(jiān)測(cè)技術(shù)能夠監(jiān)測(cè)到表面裂紋、剝落和齒輪折斷等較嚴(yán)重故障,但發(fā)現(xiàn)故障征兆到最后失效間隔時(shí)間短,難以有充分的時(shí)間制定維修策略,且惡劣的工況環(huán)境會(huì)大大降低這些手段的故障檢測(cè)能力。本文針對(duì)以上問(wèn)題,從系統(tǒng)狀態(tài)監(jiān)測(cè)角度出發(fā),以新型靜電監(jiān)測(cè)技術(shù)為核心,開(kāi)展了有關(guān)靜電傳感器建模、仿真、標(biāo)定、信號(hào)特征提取、多參數(shù)融合等方面的研究,并結(jié)合齒輪傳動(dòng)系統(tǒng)特點(diǎn),設(shè)計(jì)和搭建了配套的軟硬件設(shè)備,進(jìn)而開(kāi)展實(shí)際的工程實(shí)驗(yàn)研究。研究成果對(duì)于提高機(jī)械設(shè)備關(guān)鍵部件的狀態(tài)監(jiān)測(cè)能力具有重要參考價(jià)值和指導(dǎo)意義。論文主要研究?jī)?nèi)容如下:(1)系統(tǒng)總結(jié)和歸納了機(jī)械設(shè)備摩擦磨損時(shí)的靜電產(chǎn)生機(jī)理,摩擦荷電、摩擦發(fā)射、摩擦起電、表面荷電和磨粒荷電是靜電信息的五種主要來(lái)源。詳細(xì)介紹了靜電監(jiān)測(cè)時(shí)所依據(jù)的靜電感應(yīng)原理以及依據(jù)該原理設(shè)計(jì)的兩類最基本的靜電傳感器,磨損區(qū)域靜電傳感器和潤(rùn)滑油路靜電傳感器。并對(duì)靜電監(jiān)測(cè)技術(shù)目前主要的研究方向、應(yīng)用領(lǐng)域和優(yōu)勢(shì)特點(diǎn)進(jìn)行了細(xì)致的梳理和分析。(2)由于靜電感應(yīng)原理特殊,難以有效的描述和衡量靜電傳感器特性。通過(guò)采用理論建模方法,分別建立潤(rùn)滑油路靜電傳感器和磨損區(qū)域靜電傳感器的數(shù)學(xué)模型,依據(jù)所建模型和傳感器特點(diǎn)提煉出相應(yīng)的性能參數(shù)指標(biāo)。在此基礎(chǔ)上進(jìn)行仿真,得出相應(yīng)的參數(shù)變化規(guī)律和影響因素,為靜電傳感器性能的準(zhǔn)確描述和實(shí)驗(yàn)驗(yàn)證提供了基礎(chǔ)。(3)針對(duì)實(shí)物靜電傳感器缺少必要的標(biāo)定平臺(tái)和有效的驗(yàn)證方法,設(shè)計(jì)并加工了可用于靜電傳感器標(biāo)定的實(shí)驗(yàn)平臺(tái)。以所提性能參數(shù)為基礎(chǔ),分別針對(duì)兩類靜電傳感器進(jìn)行了一系列的標(biāo)定實(shí)驗(yàn)。各項(xiàng)參數(shù)指標(biāo)的實(shí)驗(yàn)結(jié)果與理論仿真分析結(jié)果相一致,證明了所建模型和仿真結(jié)果的正確性。初步完成了對(duì)已完成加工制造的實(shí)物靜電傳感器的標(biāo)定工作,并為靜電傳感器的進(jìn)一步設(shè)計(jì)與優(yōu)化提供了重要的參考依據(jù)。(4)為解決靜電多傳感器綜合監(jiān)測(cè)的問(wèn)題,提高系統(tǒng)監(jiān)測(cè)的精度和可靠性,在采用時(shí)域方法和復(fù)雜度度量方法進(jìn)行靜電信號(hào)多特征參數(shù)提取的基礎(chǔ)上,提出適用于靜電多傳感器信息融合的移動(dòng)窗局部離群因子多工況時(shí)變算法。分別通過(guò)改進(jìn)的滾動(dòng)軸承靜電綜合監(jiān)測(cè)平臺(tái)和銷盤磨損靜電綜合監(jiān)測(cè)平臺(tái)進(jìn)行實(shí)驗(yàn),對(duì)比驗(yàn)證了所提方法在靜電綜合監(jiān)測(cè)中的適用性和有效性。(5)為實(shí)現(xiàn)工程實(shí)際中機(jī)械設(shè)備摩擦磨損的靜電綜合監(jiān)測(cè),以齒輪傳動(dòng)系統(tǒng)為研究對(duì)象,靜電監(jiān)測(cè)技術(shù)為核心,圍繞硬件設(shè)備的架構(gòu)和軟件系統(tǒng)的開(kāi)發(fā),設(shè)計(jì)和搭建了一套完整的面向齒輪傳動(dòng)磨損的靜電綜合監(jiān)測(cè)系統(tǒng),并對(duì)系統(tǒng)中涉及的具體硬件設(shè)備組成和軟件功能模塊進(jìn)行了詳細(xì)的介紹和分析。該系統(tǒng)真正實(shí)現(xiàn)了齒輪傳動(dòng)系統(tǒng)、靜電監(jiān)測(cè)技術(shù)和數(shù)據(jù)分析處理三者間的有效融合,為齒輪傳動(dòng)系統(tǒng)的靜電綜合監(jiān)測(cè)提供必要的支持。(6)以前述一系列研究為基礎(chǔ),開(kāi)展齒輪傳動(dòng)健康狀態(tài)監(jiān)測(cè)的工程應(yīng)用實(shí)驗(yàn)。將靜電綜合監(jiān)測(cè)技術(shù)分別搭載實(shí)際的軌道交通車輛齒輪傳動(dòng)系統(tǒng)和風(fēng)電齒輪傳動(dòng)系統(tǒng)平臺(tái),按照相應(yīng)的實(shí)驗(yàn)流程和步驟,分別通過(guò)負(fù)荷疲勞實(shí)驗(yàn)、壽命加速實(shí)驗(yàn)和破壞實(shí)驗(yàn),驗(yàn)證了工程中齒輪傳動(dòng)健康狀態(tài)靜電綜合監(jiān)測(cè)的可行性和準(zhǔn)確性。
[Abstract]:As the key component of the mechanical equipment, the gear transmission system is the key component of the mechanical equipment. Its performance degradation or failure will affect the performance of the whole machine and even cause the equipment not to stop, causing economic loss and even casualties. Because of the need of industrial production, the gear transmission system, as an important transmission power part of the mechanical equipment, often needs the condition of high speed heavy load. As a result of continuous work, the failure rate is always high and the failure and failure caused by friction and wear are one of the main causes of serious system accidents. The existing conventional monitoring techniques, such as vibration and temperature, can monitor the severe faults such as surface cracks, peeling and gear breaking, but the fault signs are found to the final failure interval. The time is short, it is difficult to have sufficient time to make the maintenance strategy, and the bad working condition environment will greatly reduce the fault detection ability of these means. This paper, aiming at the above problems, starts with the system state monitoring point of view, taking the new electrostatic monitoring technology as the core, and develops the modeling, simulation, calibration, signal feature extraction and multi reference of the electrostatic sensor. The study of number fusion, combined with the characteristics of gear transmission system, designed and built supporting software and hardware equipment, and then carried out practical engineering experiment research. The research results have important reference value and guiding significance for improving the state monitoring ability of the key parts of mechanical equipment. The main contents of this paper are as follows: (1) system general The mechanism of static electricity generation, friction charge, friction emission, friction and electricity, surface charge and abrasive charge are the five main sources of electrostatic information. The principle of electrostatic induction and the two basic Electrostatic Sensors Based on the original design are introduced in detail. The main research directions, application fields and advantages of static electricity monitoring technology are carefully combed and analyzed. (2) because of the special principle of electrostatic induction, it is difficult to effectively describe and measure the specificity of electrostatic sensors. The mathematical model of the electrostatic sensor of the lubricating oil road and the electrostatic sensor of the wear area is extracted according to the characteristics of the model and the sensor. On this basis, the simulation is carried out, and the corresponding parameter variation and the influencing factors are obtained, which provides the basis for the accurate description of the performance of the electrostatic sensor and the experimental verification. (3) The physical static sensor lacks the necessary calibration platform and effective verification method, and designs and processes the experimental platform which can be used to calibrate the electrostatic sensor. Based on the performance parameters, a series of calibration experiments for two kinds of electrostatic sensors are carried out respectively. The experimental results of the parameters refer to the results of the theoretical simulation analysis. The correctness of the model and simulation results is proved. The calibration of the physical static sensor has been completed preliminarily, and it provides an important reference for the further design and optimization of the electrostatic sensor. (4) to solve the problem of the multi-sensor integrated monitoring of the electrostatic sensor and improve the accuracy and the accuracy of the system monitoring. On the basis of using the time domain method and the complexity measurement method to extract the multi characteristic parameters of the electrostatic signal, the time-varying algorithm for the multi operating conditions of the mobile window local outliers suitable for the static multi-sensor information fusion is proposed. The improved electrostatic comprehensive monitoring platform for rolling bearings and the integrated monitoring platform for the wear and wear of the pin and disk are carried out respectively. Experiments are carried out to verify the applicability and effectiveness of the proposed method in the comprehensive electrostatic monitoring. (5) in order to realize the comprehensive electrostatic monitoring of the friction and wear of the machinery and equipment in the engineering practice, the research object of the gear transmission system, the static monitoring technology as the core, the development of the architecture and software system around the hardware, and the design and construction of the system. A complete set of integrated electrostatic monitoring system for gear transmission wear is made, and detailed introduction and analysis are made of the specific hardware equipment and software function modules involved in the system. The system has truly realized the effective fusion of the gear transmission system, the electrostatic monitoring technology and the data analysis place between the three parties, and for the gear transmission system. The comprehensive electrostatic monitoring provides the necessary support. (6) on the basis of a series of previous studies, the engineering application experiment of the health monitoring of gear transmission is carried out. The integrated electrostatic monitoring technology is carried out on the actual rail vehicle gear transmission system and the wind power gear transmission system platform respectively, according to the corresponding experimental process and steps, respectively. Through load fatigue test, life accelerated test and destruction test, the feasibility and accuracy of comprehensive monitoring of gear transmission health condition in engineering are verified.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH132.41;TH117.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孔祥瑩;封閉齒輪傳動(dòng)效率的實(shí)驗(yàn)研究[J];山西機(jī)械;2002年01期
2 戴娟,夏卿坤,陳蕾;潤(rùn)滑對(duì)幾種主要的齒輪傳動(dòng)失效形式的影響[J];機(jī)床與液壓;2004年01期
3 沈卓,柳榮華;齒輪傳動(dòng)教學(xué)探討[J];職業(yè)教育研究;2004年05期
4 王月清;;淺議如何激發(fā)學(xué)生學(xué)習(xí)齒輪傳動(dòng)的積極性[J];太原經(jīng)濟(jì)管理干部學(xué)院學(xué)報(bào);2004年S1期
5 ;齒輪傳動(dòng)理論、設(shè)計(jì)、加工技術(shù)培訓(xùn)及研討會(huì)會(huì)議通知(第一號(hào))[J];機(jī)械傳動(dòng);2005年04期
6 ;第一屆世界齒輪傳動(dòng)會(huì)議在巴黎召開(kāi)[J];齒輪;1978年01期
7 孟惠榮;;赴法參加法國(guó)二屆國(guó)際齒輪傳動(dòng)會(huì)議報(bào)導(dǎo)(1986年2月26日~3月12日)[J];齒輪;1987年02期
8 顧學(xué)仁;;組合共用齒輪傳動(dòng)的應(yīng)用與分析[J];重慶建筑工程學(xué)院學(xué)報(bào);1992年S1期
9 何文平;齒輪傳動(dòng)的微機(jī)輔助設(shè)計(jì)方法[J];機(jī)械制造;1995年10期
10 楊平;衛(wèi)星齒輪傳動(dòng)的分析與設(shè)計(jì)[J];機(jī)械科學(xué)與技術(shù);1996年06期
相關(guān)會(huì)議論文 前10條
1 周向雷;張衛(wèi);;齒輪傳動(dòng)齒側(cè)間隙消除結(jié)構(gòu)分析[A];2012年全國(guó)壓力加工設(shè)備節(jié)能環(huán)保及技術(shù)創(chuàng)新研討會(huì)論文集[C];2012年
2 何毅斌;陳定方;何小華;;基于熱分析的低速重載齒輪傳動(dòng)冷卻方法研究[A];2009年促進(jìn)中部崛起專家論壇暨第五屆湖北科技論壇——裝備制造產(chǎn)業(yè)發(fā)展論壇論文集(下)[C];2009年
3 楊俊義;趙宇和;張利明;王普毅;;精密齒輪傳動(dòng)故障診斷研究與探討[A];第七屆全國(guó)信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2009年
4 馬先貴;楊景培;范振紱;劉積涵;姚玉泉;丁津原;;齒輪傳動(dòng)用油低粘化理論與實(shí)踐[A];第五屆全國(guó)摩擦學(xué)學(xué)術(shù)會(huì)議論文集(上冊(cè))[C];1992年
5 于君波;耿波;王鐵成;;齒輪傳動(dòng)振動(dòng)產(chǎn)生的原因及解決辦法[A];十三省區(qū)市機(jī)械工程學(xué)會(huì)第五屆科技論壇論文集[C];2009年
6 武志斐;王鐵;張瑞亮;;斜齒輪傳動(dòng)的嚙合瞬態(tài)動(dòng)力學(xué)分析[A];第四屆中國(guó)CAE工程分析技術(shù)年會(huì)論文集[C];2008年
7 陳丁躍;郭顏峰;徐暉;;齒輪傳動(dòng)中非線性振動(dòng)的動(dòng)力學(xué)分析[A];第十二屆全國(guó)機(jī)構(gòu)學(xué)學(xué)術(shù)研討會(huì)論文集[C];2000年
8 曲慶文;鐘振遠(yuǎn);劉源勇;;齒輪傳動(dòng)性能與潤(rùn)滑劑的特性分析[A];第二屆全國(guó)工業(yè)摩擦學(xué)大會(huì)暨第七屆全國(guó)青年摩擦學(xué)學(xué)術(shù)會(huì)議會(huì)議論文集[C];2004年
9 郭峰;;涼水塔風(fēng)機(jī)減速機(jī)齒輪傳動(dòng)失效分析[A];2006年第二屆七省區(qū)市機(jī)械工程學(xué)會(huì)科技論壇暨學(xué)會(huì)改革與發(fā)展研討會(huì)論文集[C];2006年
10 孫凱燕;袁文明;林福嚴(yán);;四球?qū)嶒?yàn)和齒輪傳動(dòng)條件下油膜厚度的計(jì)算[A];第十一屆全國(guó)摩擦學(xué)大會(huì)論文集[C];2013年
相關(guān)重要報(bào)紙文章 前2條
1 記者 劉林 通訊員 張兆明 滕智東;太平洋齒輪傳動(dòng)項(xiàng)目姜堰動(dòng)工[N];泰州日?qǐng)?bào);2009年
2 林琳;中國(guó)是機(jī)器人的故鄉(xiāng)[N];北京日?qǐng)?bào);2001年
相關(guān)博士學(xué)位論文 前10條
1 馮海生;高速大功率密度齒輪傳動(dòng)系統(tǒng)動(dòng)態(tài)特性及阻尼環(huán)減振研究[D];哈爾濱工業(yè)大學(xué);2015年
2 劉若晨;齒輪傳動(dòng)磨損狀態(tài)靜電綜合監(jiān)測(cè)技術(shù)研究[D];南京航空航天大學(xué);2016年
3 楊曉宇;齒輪傳動(dòng)系統(tǒng)動(dòng)力學(xué)特性的有限元分析及試驗(yàn)方法研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2005年
4 潘存云;球齒輪傳動(dòng)原理與加工方法研究[D];中國(guó)人民解放軍國(guó)防科學(xué)技術(shù)大學(xué);2002年
5 李紹彬;高速重載齒輪傳動(dòng)熱彈變形及非線性耦合動(dòng)力學(xué)研究[D];重慶大學(xué);2004年
6 張靖;不同因素激勵(lì)下齒輪傳動(dòng)動(dòng)力學(xué)仿真及實(shí)驗(yàn)研究[D];重慶大學(xué);2012年
7 李海翔;漸開(kāi)弧面齒輪傳動(dòng)的基本理論及試驗(yàn)研究[D];重慶大學(xué);2012年
8 楊鐵梅;基于混合智能的齒輪傳動(dòng)系統(tǒng)集成故障診斷方法研究[D];太原理工大學(xué);2009年
9 李懷俊;基于能量信號(hào)分析的齒輪傳動(dòng)系統(tǒng)故障診斷方法與系統(tǒng)研究[D];華南理工大學(xué);2014年
10 袁曉明;磁場(chǎng)調(diào)制型磁齒輪傳動(dòng)系統(tǒng)動(dòng)力學(xué)研究[D];燕山大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 付永佩;動(dòng)車組齒輪傳動(dòng)系統(tǒng)振動(dòng)特性研究[D];西南交通大學(xué);2015年
2 鄭思來(lái);基于振動(dòng)信號(hào)的齒輪傳動(dòng)監(jiān)測(cè)系統(tǒng)[D];南昌航空大學(xué);2015年
3 李寧;固體潤(rùn)滑涂層齒輪傳動(dòng)溫度場(chǎng)分析[D];重慶大學(xué);2015年
4 牟春陽(yáng);基于人體足部運(yùn)動(dòng)能的電源設(shè)計(jì)[D];中北大學(xué);2016年
5 胡雄;齒輪嚙合動(dòng)力學(xué)特性研究與故障模擬[D];東北大學(xué);2014年
6 孫文;基于反步積分的齒輪傳動(dòng)穩(wěn)定平臺(tái)補(bǔ)償控制技術(shù)研究[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2016年
7 楊大謙;齒輪傳動(dòng)形性測(cè)試儀的開(kāi)發(fā)[D];北京工業(yè)大學(xué);2016年
8 牛秋蔓;幾何偏心齒輪傳動(dòng)精度分析[D];東北大學(xué);2013年
9 白學(xué)斌;多級(jí)齒輪傳動(dòng)系統(tǒng)動(dòng)力學(xué)分析及仿真研究[D];東北大學(xué);2013年
10 周霜霜;水陸兩棲裝甲車分動(dòng)器齒輪傳動(dòng)動(dòng)力學(xué)分析[D];沈陽(yáng)理工大學(xué);2016年
,本文編號(hào):2010937
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2010937.html