天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)電工程論文 >

無(wú)摩擦氣缸及高精度氣動(dòng)負(fù)載系統(tǒng)研究

發(fā)布時(shí)間:2018-06-07 08:58

  本文選題:氣體潤(rùn)滑 + 靜壓氣體軸承。 參考:《浙江大學(xué)》2016年博士論文


【摘要】:氣缸是氣動(dòng)系統(tǒng)中最常用的執(zhí)行元件,在生產(chǎn)制造領(lǐng)域得到了最為廣泛應(yīng)用。傳統(tǒng)氣缸在氣動(dòng)伺服控制場(chǎng)合下面臨著新的挑戰(zhàn),氣體介質(zhì)的可壓縮性使得對(duì)氣缸的精確控制更加困難,摩擦力的存在使得氣缸在低速運(yùn)行時(shí)性能下降。由于氣體介質(zhì)不具備自潤(rùn)滑特性,摩擦力給氣動(dòng)控制系統(tǒng)帶來(lái)了很大的麻煩。為了提高伺服控制效果,研究人員除了在控制策略、控制元件等方面展開(kāi)研究外,還不得不對(duì)摩擦力展開(kāi)細(xì)致深入的研究。摩擦力除了給氣動(dòng)伺服控制增加困難外,還給氣缸本身帶來(lái)了一些問(wèn)題,比如發(fā)熱、噪聲、振動(dòng)、粉塵、影響壽命等,給氣動(dòng)系統(tǒng)帶來(lái)安全隱患。因此,除了致力于研究影響摩擦力的因素、建立更準(zhǔn)確的數(shù)學(xué)模型之外,有效降低氣缸的摩擦力無(wú)疑會(huì)帶來(lái)更為直接的好處。如何減小氣缸的摩擦力,開(kāi)發(fā)出新型低摩擦氣缸乃至無(wú)摩擦氣缸已經(jīng)成為氣缸發(fā)展的一個(gè)新方向。本文提出了一種基于靜壓氣體軸承的氣浮式無(wú)摩擦氣缸,采用靜壓氣體軸承的原理設(shè)計(jì)氣缸的活塞,在活塞兩側(cè)的端蓋上對(duì)稱布置了單向閥,使得軸承內(nèi)腔始終與氣缸高壓腔一側(cè)連通,解決了氣浮軸承的供氣問(wèn)題。同時(shí),這種帶有單向閥的軸承結(jié)構(gòu)還能在氣缸換向過(guò)程中起到保壓的作用,使氣浮軸承工作更穩(wěn)定。在建立了氣浮軸承數(shù)學(xué)模型的基礎(chǔ)上,提出了一種基于Matlab的氣膜壓力分布的數(shù)值求解方法,利用此方法研究了軸承的氣浮特性,并結(jié)合電容測(cè)微原理對(duì)軸承的耗氣量模型進(jìn)行了研究,以Matlab/Simulink仿真和試驗(yàn)相結(jié)合的方法對(duì)氣缸換向特性進(jìn)行了研究。設(shè)計(jì)了一套以氣浮式無(wú)摩擦氣缸為執(zhí)行機(jī)構(gòu)的高精度氣動(dòng)負(fù)載系統(tǒng),采用帶有穩(wěn)態(tài)輸出預(yù)測(cè)的模糊PID控制器實(shí)現(xiàn)了對(duì)系統(tǒng)的高精度恒壓控制,穩(wěn)態(tài)壓力波動(dòng)小于50Pa,活塞運(yùn)動(dòng)達(dá)到1 000mm/s時(shí)系統(tǒng)的穩(wěn)態(tài)壓力波動(dòng)小于150Pa,達(dá)到較高的精度。建立以高精度氣動(dòng)負(fù)載系統(tǒng)為基礎(chǔ)的常規(guī)氣缸負(fù)載性能測(cè)試系統(tǒng),解決了當(dāng)前國(guó)標(biāo)難以具體實(shí)施的問(wèn)題。文章最后利用高精度氣動(dòng)負(fù)載系統(tǒng)對(duì)常規(guī)氣缸的摩擦力測(cè)試方法做了 一些新的探索,利用本文提出的方法能夠方便快速的測(cè)試出氣缸勻速運(yùn)動(dòng)時(shí)的摩擦力。本文共有七章,現(xiàn)將各章節(jié)的主要內(nèi)容概括如下:第一章,詳細(xì)介紹了無(wú)摩擦氣缸的研究現(xiàn)狀、氣體潤(rùn)滑相關(guān)技術(shù)的研究進(jìn)展以及相關(guān)氣動(dòng)技術(shù)的發(fā)展?fàn)顩r,指出基于靜壓氣體軸承技術(shù)的無(wú)摩擦氣缸仍是未來(lái)無(wú)摩擦氣缸的發(fā)展方向,簡(jiǎn)述了氣動(dòng)伺服控制技術(shù)的研究現(xiàn)狀。最后概括了本課題的研究意義、研究難點(diǎn)以及主要研究?jī)?nèi)容。第二章,詳細(xì)介紹了氣浮式無(wú)摩擦氣缸的機(jī)械結(jié)構(gòu)、工作原理及技術(shù)難點(diǎn)。分析了氣浮軸承的工作特性,提出了一種浮動(dòng)連接機(jī)構(gòu)用于解決活塞與活塞桿存在徑向偏差或角度偏差而可能引起的卡死問(wèn)題。建立氣浮軸承氣膜壓力分布的數(shù)學(xué)模型,并對(duì)求解該模型的不同方法進(jìn)行了分析,指出傳統(tǒng)基于一維流簡(jiǎn)化的計(jì)算法不夠準(zhǔn)確以及基于Fluent的有限元仿真方法不適合于研究多結(jié)構(gòu)參數(shù)對(duì)軸承氣浮特性的影響。第三章,提出了一種基于Matlab的有限元數(shù)值求解方法,詳細(xì)介紹了該方法所需的公式推導(dǎo)、氣膜邊界及邊界條件的初始化、循環(huán)更新邊界條件的流程、節(jié)流孔出口壓力的迭代求解過(guò)程、軸承耗氣量及承載力的計(jì)算方法等過(guò)程。得到氣膜壓力分布數(shù)據(jù),并研究了均壓腔及均壓帶對(duì)軸承徑向承載力和耗氣量的影響,指出了均壓腔對(duì)提高氣浮軸承的性能具有重要作用;并利用Fluent對(duì)氣浮軸承進(jìn)行了仿真,分析了氣體在節(jié)流孔及均壓腔中的流動(dòng)特性,證實(shí)了均壓腔內(nèi)部壓力相等這一假設(shè)的有效性。第四章,提出了利用電容測(cè)微原理對(duì)活塞泄漏模型進(jìn)行研究的新方法;钊鈭A周面與氣缸筒內(nèi)壁構(gòu)成了偏心圓柱電容器,將微小位置的變化轉(zhuǎn)化為電容器電容的變化可以把對(duì)位置的測(cè)量轉(zhuǎn)化為對(duì)電容的測(cè)量,利用電容值來(lái)衡量活塞的偏心率避免了對(duì)運(yùn)動(dòng)中的活塞偏心進(jìn)行直接測(cè)量。利用該方法了建立基于離線數(shù)據(jù)的活塞耗氣量模型,并提出了判斷軸承是否正常工作的指標(biāo)。研究了無(wú)摩擦氣缸的換向特性,仿真和實(shí)驗(yàn)都表明,這種帶有單向閥的活塞結(jié)構(gòu)在氣缸換向過(guò)程中具有保壓的作用;指出了換向時(shí)間是影響換向過(guò)程中活塞內(nèi)腔壓力的主要因素,活塞處于氣缸中位時(shí)是氣缸的最佳換向時(shí)機(jī)。第五章,以氣浮無(wú)摩擦氣缸為基礎(chǔ)設(shè)計(jì)了氣浮式高精度氣動(dòng)負(fù)載系統(tǒng),詳細(xì)介紹了系統(tǒng)的結(jié)構(gòu)、工作原理、控制系統(tǒng)的軟/硬件結(jié)構(gòu)。利用可變?nèi)莘e的壓力動(dòng)態(tài)模型、氣浮式無(wú)摩擦氣缸的泄漏模型以及比例方向閥的流量模型建立系統(tǒng)的數(shù)學(xué)模型。設(shè)計(jì)帶了穩(wěn)態(tài)輸出預(yù)測(cè)的模糊PID控制算法,并通過(guò)實(shí)驗(yàn)對(duì)系統(tǒng)的穩(wěn)態(tài)和動(dòng)態(tài)特性展開(kāi)了研究。實(shí)驗(yàn)結(jié)果顯示,系統(tǒng)的穩(wěn)態(tài)壓力波動(dòng)小于50Pa,在氣缸活塞以1000mm/s的速度快速往復(fù)運(yùn)動(dòng)過(guò)程中仍能保證150Pa以內(nèi)的壓力波動(dòng),活塞停止運(yùn)動(dòng)后系統(tǒng)能夠快速的回復(fù)到較高的控制精度。第六章,以高精度氣動(dòng)負(fù)載系統(tǒng)為基礎(chǔ)構(gòu)建了符合標(biāo)準(zhǔn)要求的常規(guī)氣缸負(fù)載性能測(cè)試平臺(tái),根據(jù)標(biāo)準(zhǔn)對(duì)氣缸負(fù)載性能和測(cè)試流程的規(guī)定對(duì)氣缸的負(fù)載性能進(jìn)行了測(cè)試。結(jié)果表明,標(biāo)準(zhǔn)指定的基于出口節(jié)流調(diào)速的氣缸負(fù)載性能測(cè)試系統(tǒng)不能有效的控制被測(cè)氣缸的速度,測(cè)試過(guò)程中有較大的沖擊,不能準(zhǔn)確的反映氣缸在負(fù)載下真實(shí)的運(yùn)動(dòng)狀態(tài),并提出了采用進(jìn)口節(jié)流調(diào)速的方式控制被測(cè)氣缸的運(yùn)動(dòng)速度的改進(jìn)方案。根據(jù)測(cè)試過(guò)程中被測(cè)氣缸的運(yùn)動(dòng)速度和兩腔壓力變化曲線分析了在軸向負(fù)載作用氣缸的運(yùn)動(dòng)特性,并研究了不同負(fù)載對(duì)氣缸運(yùn)動(dòng)穩(wěn)定性的影響,結(jié)果顯示氣缸的無(wú)爬行最低運(yùn)行速度隨著作用于被測(cè)氣缸的軸向負(fù)載的增大而減少。以高精度氣動(dòng)負(fù)載系統(tǒng)為基礎(chǔ)構(gòu)建了一套常規(guī)氣缸的摩擦力測(cè)試系統(tǒng),通過(guò)被測(cè)氣缸左右兩腔的壓力及預(yù)加負(fù)載計(jì)算出氣缸的運(yùn)動(dòng)過(guò)程中的動(dòng)摩擦力。實(shí)驗(yàn)表明,這種方法能夠方便、快捷的獲取氣缸的摩擦力,為氣缸摩擦力的測(cè)試提供了新思路。第七章,對(duì)本論文的主要工作、研究結(jié)論和創(chuàng)新點(diǎn)進(jìn)行了總結(jié),并對(duì)未來(lái)的研究工作進(jìn)行了展望。
[Abstract]:Cylinder is the most commonly used actuator in pneumatic system, which has been widely used in the production and manufacturing field. The traditional cylinder faces new challenges in pneumatic servo control. The compressibility of the gas medium makes the precise control of the cylinder more difficult, and the friction force keeps the cylinder performance down at low speed. The friction force has brought great trouble to the pneumatic control system. In order to improve the effect of the servo control, the researchers have to study the friction force in detail in addition to the control strategy and the control element. The friction force is difficult to increase the pneumatic servo control. It also brings some problems to the cylinder itself, such as heating, noise, vibration, dust, and affecting the life of the pneumatic system. Therefore, in addition to the research on the factors affecting the friction force and the establishment of a more accurate mathematical model, the effective reduction of the friction force of the cylinder will undoubtedly bring a more direct benefit. The development of the new low friction cylinder and even the frictionless cylinder has become a new direction for the development of the cylinder. In this paper, a air floating type air cylinder based on the static pressure gas bearing is proposed. The piston of the cylinder is designed by the principle of static pressure gas bearing. The unidirectional valve is arranged symmetrically on the end cover of the two sides of the piston to make the bearing of the bearing. The inner cavity is always connected to the side of the high pressure chamber of the cylinder to solve the gas supply problem of the air bearing. At the same time, the bearing structure with a one-way valve can also play the role of pressure protection in the process of cylinder reversing, and make the air bearing work more stable. On the basis of establishing the mathematical model of the air floating bearing, a kind of gas film pressure based on Matlab is proposed. The method of numerical solution of distribution is used to study the air floating characteristics of bearing. The air consumption model of bearing is studied with the principle of capacitance micrometer. The change of cylinder reversing characteristics is studied by combining Matlab/Simulink simulation and test. A set of high precision with air floating cylinder without friction cylinder is designed. The system has high precision constant pressure control with a fuzzy PID controller with steady-state output prediction. The steady pressure fluctuation of the steady state pressure is less than 50Pa. The steady state pressure fluctuation of the system is less than 150Pa when the piston movement reaches 1 000mm/s, and the high precision is achieved. The conventional cylinder negative is based on the high precision pneumatic load system. The performance testing system has solved the problem that the current national standard is difficult to implement. At the end of this paper, a high precision pneumatic load system is used to make some new exploration on the friction testing method of the conventional cylinder. The method proposed in this paper can easily and quickly test the friction force when the cylinder is moving at uniform speed. In this paper, there are seven chapters. The main contents of each chapter are summarized as follows: in the first chapter, the research status of the frictionless cylinder, the research progress of the related technology of gas lubrication and the development of the related pneumatic technology are introduced in detail. It is pointed out that the frictionless cylinder based on the static pressure gas bearing technology is still the development direction of the frictionless cylinder in the future, and the pneumatic servo control technique is briefly described. In the second chapter, the mechanical structure, the working principle and the technical difficulties of the air floating type frictionless cylinder are introduced in detail. The working characteristics of the air floating bearing are analyzed, and a floating connection mechanism is put forward to solve the existence of the piston and the piston rod. The mathematical model of gas film pressure distribution of air bearing is established and the different methods for solving this model are established. It is pointed out that the traditional method based on one dimensional flow simplification is not accurate and the finite element imitation method based on Fluent is not suitable for the study of the multi structure parameter pair axis. In the third chapter, a finite element numerical solution method based on Matlab is proposed. The formula derivation, the initialization of the boundary and boundary conditions of the gas film, the flow of the cyclic updating boundary conditions, the iterative solution process of the outlet pressure of the throttle outlet, the calculation method of the bearing capacity and bearing capacity of the bearing are introduced in detail. The influence of the pressure distribution on the radial bearing capacity and gas consumption of the bearing is studied. It is pointed out that the pressure sharing chamber plays an important role in improving the performance of the bearing, and the air bearing is simulated with Fluent, and the flow characteristics of the gas body in the throttle hole and the pressure mean cavity are analyzed. The validity of the assumption that the internal pressure of the pressure equalizer is equal. In the fourth chapter, a new method is put forward to study the piston leakage model by using the principle of capacitance micrometer. The outer circumference of the piston and the inner wall of the cylinder form a eccentric cylindrical capacitor. The change of the change of the tiny position to the capacitor of the capacitor can turn the measurement of the position to the position. To measure the capacitance, the eccentricity of the piston is measured by using the capacitance value to avoid the direct measurement of the piston eccentricity in the motion. This method is used to establish the piston gas consumption model based on the off-line data, and the index to determine the normal work of the bearing is proposed. The change characteristics of the frictionless cylinder are studied, the simulation and the experiment are studied. It shows that the piston structure with a one-way valve has the function of holding pressure in the process of cylinder reversing. It is pointed out that the changing direction is the main factor affecting the internal pressure of the piston cavity during the reversing process. When the piston is in the middle of the cylinder, it is the best change time of the cylinder. In the fifth chapter, the air floating high precision gas is designed on the basis of the air floating cylinder without friction. The structure of the system, the working principle, the soft / hardware structure of the control system are introduced in detail, and the mathematical model of the system is established by using the variable volume pressure dynamic model, the leakage model of the air floatation type frictionless cylinder and the flow model of the proportional directional valve. The fuzzy PID control algorithm with the steady-state output prediction is designed and passed. The experimental results show the steady state and dynamic characteristics of the system. The experimental results show that the steady state pressure fluctuation of the system is less than 50Pa, and the pressure fluctuation within 150Pa can still be guaranteed in the process of fast reciprocating movement of cylinder piston at the speed of 1000mm/s, and the system can quickly recover to a higher control precision after the piston stops moving. Sixth chapters A conventional cylinder load performance testing platform is built on the basis of high precision pneumatic load system, and the load performance of cylinder is tested according to the standard cylinder load performance and testing process. The results show that the standard specified cylinder load performance testing system based on the exit throttle speed regulation can not be effective. To control the velocity of the cylinder, there is a great impact in the test process. It can not accurately reflect the real motion state of the cylinder under the load, and puts forward an improved scheme to control the velocity of the cylinder by the way of inlet throttle speed regulation. The motion characteristics of the cylinder in the axial load are analyzed, and the effect of different loads on the cylinder motion stability is studied. The results show that the minimum running speed of the cylinder is reduced with the increase of the axial load acting on the cylinder. Based on the high precision pneumatic load system, a set of friction force measurement for the conventional cylinder is built. The test system, through the pressure of the two cavities around the cylinder and the load preloaded, calculates the dynamic friction force in the movement of the cylinder. The experiment shows that this method can easily and quickly obtain the friction force of the cylinder, and provides a new idea for the test of cylinder friction force. Seventh chapters, the main work of this paper, the research conclusions and the innovation points are carried out. Finally, the future research work is prospected.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH138.51

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉福才;賈亞飛;劉爽爽;;氣動(dòng)加載系統(tǒng)的積分型線性自抗擾控制[J];控制理論與應(yīng)用;2015年08期

2 孫建輝;周丹鋒;袁巧玲;;帶卸壓槽的微摩擦氣缸Fluent仿真分析[J];中國(guó)機(jī)械工程;2015年04期

3 劉福才;劉硯;徐文麗;劉吉斯;;氣動(dòng)加載系統(tǒng)的模糊自適應(yīng)逆控制方法[J];機(jī)械工程學(xué)報(bào);2014年14期

4 姚燕生;郭寶林;代祥;;氣浮式無(wú)摩擦氣缸設(shè)計(jì)[J];機(jī)械設(shè)計(jì)與研究;2014年02期

5 年珊珊;王學(xué)影;郭斌;趙靜;;氣動(dòng)模擬加載系統(tǒng)的模糊PID控制研究[J];組合機(jī)床與自動(dòng)化加工技術(shù);2014年03期

6 葉儀;殷晨波;劉輝;鄒根;姜雪峰;;節(jié)流槽閥口靜態(tài)流動(dòng)特性研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年06期

7 孟德遠(yuǎn);陶國(guó)良;錢鵬飛;班偉;;氣動(dòng)力伺服系統(tǒng)的自適應(yīng)魯棒控制[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2013年09期

8 凌明祥;王玨;李明海;張榮;;空氣軸承間隙測(cè)量精度分析[J];傳感器與微系統(tǒng);2013年06期

9 陳貴林;劉硯;徐文麗;劉吉斯;劉福才;;基于數(shù)據(jù)驅(qū)動(dòng)的氣動(dòng)加載系統(tǒng)在線建模方法[J];機(jī)床與液壓;2013年03期

10 李瑞;賈建芳;楊瑞峰;;負(fù)載模擬器控制策略的研究綜述[J];液壓與氣動(dòng);2012年10期

相關(guān)會(huì)議論文 前1條

1 于賀春;馬文琦;;氣體軸承技術(shù)的研究與發(fā)展[A];第四屆全國(guó)流體傳動(dòng)與控制學(xué)術(shù)會(huì)議論文集[C];2006年

相關(guān)博士學(xué)位論文 前6條

1 孟德遠(yuǎn);高精度氣動(dòng)同步系統(tǒng)研究[D];浙江大學(xué);2013年

2 向忠;氣動(dòng)高速開(kāi)關(guān)閥關(guān)鍵技術(shù)研究[D];浙江大學(xué);2010年

3 林晶;高密度硬盤(pán)磁頭滑塊氣浮潤(rùn)滑面優(yōu)化設(shè)計(jì)及實(shí)驗(yàn)研究[D];清華大學(xué);2009年

4 路波;零重力環(huán)境模擬氣動(dòng)懸掛系統(tǒng)的關(guān)鍵技術(shù)研究[D];浙江大學(xué);2009年

5 劉延俊;氣動(dòng)比例位置系統(tǒng)的控制方法及動(dòng)態(tài)特性研究[D];山東大學(xué);2008年

6 朱笑叢;氣動(dòng)肌肉并聯(lián)關(guān)節(jié)高精度位姿控制研究[D];浙江大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 米曉明;氣動(dòng)恒力輸出系統(tǒng)精度及穩(wěn)定性的研究[D];蘭州理工大學(xué);2014年

2 年珊珊;基于氣動(dòng)比例技術(shù)的加載控制系統(tǒng)的設(shè)計(jì)[D];中國(guó)計(jì)量學(xué)院;2014年

3 李瑞;電動(dòng)負(fù)載模擬器的控制系統(tǒng)研究[D];中北大學(xué);2013年

4 周泰;多缸變載情況下氣缸綜合測(cè)試平臺(tái)的設(shè)計(jì)[D];電子科技大學(xué);2013年

5 劉欣巖;氣缸低速爬行時(shí)建模與仿真研究[D];哈爾濱理工大學(xué);2012年

6 張亮;氣動(dòng)負(fù)載模擬器頻率特性研究[D];哈爾濱工業(yè)大學(xué);2010年

7 鄭海輝;雙面拋光機(jī)氣動(dòng)加載控制系統(tǒng)的研究[D];浙江工業(yè)大學(xué);2010年

8 曹治軍;動(dòng)壓氣體軸承靜、動(dòng)態(tài)特性的研究[D];西安理工大學(xué);2010年

9 崔宗偉;氣缸低速摩擦力特性的研究及其建模與仿真[D];哈爾濱工業(yè)大學(xué);2008年

10 吳國(guó)良;氣缸綜合性能測(cè)試系統(tǒng)的研究[D];浙江大學(xué);2007年

,

本文編號(hào):1990611

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/1990611.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f81df***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com