液壓油箱中固體顆粒運動軌跡及分布的仿真研究
本文選題:液壓油箱 + 歐拉-格朗日模型。 參考:《蘭州理工大學》2017年碩士論文
【摘要】:顆粒物污染亦是液壓油的主要污染物之一。液壓油箱的的主要功能是存儲流體和補充液壓系統(tǒng)操作過程中所有的體積變化,除此之外液壓油箱提供了各種有利于系統(tǒng)和各類元件的其他功能,其中,最為重要的是確保液壓組件在正常操作下油液中空氣的分離及固體顆粒污染物的沉淀,顆粒物作為液壓油箱中的污染物之一隨油液由泵吸入進入液壓系統(tǒng),由于顆粒污染加速液壓元件的磨損、導致液壓閥的卡滯及系統(tǒng)故障,所以對于設計具有較高顆粒沉降速率的新型液壓油箱對液壓系統(tǒng)的整體性能及液壓組件的壽命至關重要。本論文通過數(shù)值模擬計算,分析獲得油箱中油液的流動狀態(tài)和固體顆粒運動軌跡的分布,為新型液壓油箱的設計提供研究依據(jù)。研究結果表明:油箱中的某些循環(huán)區(qū)域會形成高湍流強度區(qū)域,顯著影響顆粒的運動。粒徑大的顆粒運動受到湍流的影響較小,粒徑小的顆粒運動易受到湍流影響;粒徑小的顆粒與流體之間有較好的跟隨性;顆粒運動過程中受到湍流的影響隨液流速度的增加而增強;另外,通過對比分析不同結構油箱中顆粒的沉降特點,在油箱中設置隔板和擴散器能延長油液的流動路徑、穩(wěn)定液流進入油箱的狀態(tài)、增加顆粒的停留時間,提高固體顆粒的去除率。為新型液壓油箱的設計提供依據(jù)。第一章,通過液壓油箱的概述闡述了固液兩相流仿真技術在液壓系統(tǒng)中的應用;概述了關于液壓油箱各方面性能提高的國內外研究現(xiàn)狀及主要存在的問題;對本論文的研究做了概括和總結。第二章,對油箱中顆粒運動所受力進行理論分析,建立液壓油箱的CFD計算模型,運用CFX軟件中的歐拉-拉格朗日模型對液壓油箱內固-液兩相流流場進行數(shù)值模擬,研究分析不同粒徑下顆粒的運動軌跡以及油液的流動對顆粒運動的影響,提出了提高顆粒沉降的方法。第三章,結合上章計算結果的分析和設想,提出并建立了幾種不同結構的油箱模型,根據(jù)油液的流動狀態(tài)和顆粒物沉積的特點及運動軌跡,改變油箱的結構,分析結構改進后的流場分布,同時對固體顆粒分布進行模擬,設計出具有較高顆粒沉降速率的新型液壓油箱。第四章,利用CFX軟件中的歐拉-歐拉模型,計算固體顆粒物在液壓油箱中的體積分數(shù);分析不同模型中顆粒最終的集聚位置;并對不同油箱模型出口處顆粒的體積分數(shù)進行計算,從而對比說明不同結構中顆粒的沉降性能。本文基于理論分析和CFX數(shù)值仿真等手段,研究分析不同粒徑顆粒污染物在油箱的運動軌跡,獲得顆粒在油箱中運動的物理機制,從而以此為出發(fā)點,提出了幾種不同的提高顆粒物沉降的結構,研究結果對于提高液壓油箱中顆粒污染物的沉降率有一定的指導意義,而且為新型液壓油箱的設計提供依據(jù)。
[Abstract]:Particulate matter pollution is also one of the main pollutants in hydraulic oil. The main function of the hydraulic oil tank is to store the fluid and replenish all the volume changes during the operation of the hydraulic system. In addition, the hydraulic oil tank provides a variety of other functions in favor of the system and various components, among which, The most important thing is to ensure the separation of air in the oil and the precipitation of the contaminants from the solid particles under normal operation of the hydraulic components. The particles, as one of the pollutants in the hydraulic tank, enter the hydraulic system with the suction of the oil through the pump. Particle pollution accelerates the wear of hydraulic components, which leads to the stagnation of hydraulic valves and system failure, so it is very important to design a new type of hydraulic oil tank with high particle settling rate for the whole performance of hydraulic system and the life of hydraulic components. In this paper, the flow state of the oil in the tank and the distribution of the motion trajectory of the solid particles are obtained by numerical simulation, which provides the basis for the design of the new type of hydraulic oil tank. The results show that some circulating regions in the tank will form a high turbulence intensity region, which has a significant effect on the movement of particles. The movement of particles with large particle size is less affected by turbulence, the movement of particles with small particle size is easily affected by turbulence, and the movement of particles with small particle size is better followed by fluid. The effect of turbulence on particle motion increases with the increase of liquid flow velocity. In addition, by comparing and analyzing the settling characteristics of particles in different oil tanks, the flow path of oil can be prolonged by setting separators and diffusers in the tank. Stable liquid flow into the tank state, increase the residence time of particles, improve the removal rate of solid particles. It provides the basis for the design of the new type hydraulic oil tank. In the first chapter, the application of solid-liquid two-phase flow simulation technology in hydraulic system is described through the overview of hydraulic tank, and the domestic and international research status and main existing problems of improving the performance of hydraulic tank in various aspects are summarized. The research of this paper is summarized and summarized. In the second chapter, the theoretical analysis of the force acting on the particles in the tank is carried out, and the CFD calculation model of the hydraulic tank is established, and the numerical simulation of the solid-liquid two-phase flow field in the hydraulic tank is carried out by using the Euler-Lagrange model in the CFX software. The effect of particle trajectory and oil flow on particle movement was studied and the method of increasing particle sedimentation was put forward. In the third chapter, combined with the analysis and assumption of the calculation results in the previous chapter, several oil tank models with different structures are put forward and established. According to the flow state of the oil and the characteristics and track of the particles deposition, the structure of the oil tank is changed. The flow field distribution of the improved structure is analyzed and the distribution of solid particles is simulated. A new type of hydraulic oil tank with high settling rate of particles is designed. In chapter 4, the volume fraction of solid particles in hydraulic tank is calculated by using Euler-Euler model in CFX software, and the final accumulation position of particles in different models is analyzed. The volume fraction of particles at the outlet of different fuel tank models is calculated, and the settling performance of particles in different structures is compared. Based on the theoretical analysis and CFX numerical simulation, this paper studies and analyzes the movement trajectory of different particle size pollutants in the tank, and obtains the physical mechanism of the particle movement in the tank, thus taking this as the starting point. Several different structures for increasing particle deposition are proposed. The results have certain guiding significance for improving the settling rate of particulate pollutants in hydraulic oil tanks and provide the basis for the design of new type hydraulic oil tanks.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH137.5
【參考文獻】
相關期刊論文 前10條
1 馮永保;孫飛;王浩;楊波波;;伺服滑閥閥腔及配合間隙顆粒雜質分布研究[J];潤滑與密封;2016年11期
2 趙春玲;劉新強;冀宏;王金林;;均壓槽對滑閥配合間隙內固體顆粒分布的影響[J];甘肅科學學報;2016年02期
3 宋濤;于存貴;蘇騰騰;李宗濤;;基于單片機的液壓油箱自動散熱系統(tǒng)設計[J];電子設計工程;2016年07期
4 譚技;滕達;井江;譚智鵬;李萍;熊俊俏;;某車載液壓油箱的設計與結構分析[J];液壓氣動與密封;2016年03期
5 冀宏;孫東寧;王金林;張繼銘;;液壓油箱內氣泡流動觀測及氣泡分離方法[J];蘭州理工大學學報;2015年04期
6 韋茂志;王允;;某型裝載機液壓油箱的改進設計[J];裝備制造技術;2015年07期
7 郝毓雅;任偉;;閉式油箱通氣增壓系統(tǒng)氣壓變化規(guī)律[J];現(xiàn)代機械;2014年06期
8 何琪功;劉新強;;液壓滑閥配合間隙固體顆粒侵入及分布的數(shù)值模擬[J];液壓與氣動;2014年10期
9 胡英;張昕;孫豐迎;;浮動隔板油箱的設計[J];一重技術;2014年05期
10 蘭江;朱磊;趙競全;;通用油箱熱模型的建模與仿真[J];航空動力學報;2014年07期
相關會議論文 前1條
1 楊爾莊;;液壓技術的發(fā)展動向及展望[A];第三屆全國流體傳動及控制學術會議大會交流論文集[C];2004年
相關博士學位論文 前1條
1 欒一剛;軸流旋風分離器數(shù)值模擬與實驗研究[D];哈爾濱工程大學;2011年
,本文編號:1990153
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1990153.html