永磁渦流傳動(dòng)裝置散熱系統(tǒng)分析及優(yōu)化
本文選題:永磁渦流傳動(dòng) + 弧形肋片; 參考:《安徽理工大學(xué)》2017年碩士論文
【摘要】:永磁渦流傳動(dòng)裝置在工作過(guò)程中由于渦流而產(chǎn)生熱量,熱量的積聚會(huì)導(dǎo)致導(dǎo)體盤(pán)溫度升高,對(duì)于礦井下工作安全性有很大威脅,且由于主從動(dòng)盤(pán)工作氣隙小,積聚的溫度通過(guò)熱對(duì)流傳遞給永磁體,而導(dǎo)致永磁體溫度升高退磁失效。除了風(fēng)冷、水冷、油冷等強(qiáng)迫對(duì)流方式以外,肋片散熱器是永磁渦流傳動(dòng)裝置廣泛采用的有效散熱一種方式,而肋片散熱器由于性能穩(wěn)定、散熱性能好且花費(fèi)低而倍受歡迎。以前的大量研究主要集中在水平放置,強(qiáng)迫對(duì)流的矩形直肋散熱片,弧肋的散熱面積更大,散熱效果更好,本文的工作對(duì)此進(jìn)行了擴(kuò)展和深入探究,討論和分析了自然對(duì)流狀態(tài)下豎直均布在導(dǎo)體盤(pán)上的弧形散熱片布置位置和尺寸的大小對(duì)于散熱性能的影響。并用ANSYS仿真分析,最后通過(guò)實(shí)驗(yàn)驗(yàn)證。采用最小熵產(chǎn)理論,進(jìn)行公式推導(dǎo)與計(jì)算,提出了對(duì)散熱片的機(jī)構(gòu)幾何尺寸中肋片高度H,起終止點(diǎn)與導(dǎo)體盤(pán)心連線(xiàn)的夾角α,起終止點(diǎn)連線(xiàn)作為弦長(zhǎng)的肋弧所對(duì)應(yīng)的圓心角β,肋片前后兩平行弧面間距s,肋片個(gè)數(shù)n作為熱阻的自變量,熵產(chǎn)率Q為目標(biāo)函數(shù)進(jìn)行分析設(shè)計(jì)。先利用實(shí)驗(yàn)臺(tái)常量參數(shù)計(jì)算出導(dǎo)體銅盤(pán)的溫度作為熱源,然后利用MATLAB進(jìn)行最優(yōu)化參數(shù)設(shè)計(jì),計(jì)算出合理設(shè)計(jì)尺寸范圍內(nèi)弧形肋片在最佳散熱性能阻情況下所對(duì)應(yīng)的設(shè)計(jì)尺寸,再結(jié)合實(shí)際工況改善進(jìn)行SolidWorks建模,利用Fluent的流固耦合模塊進(jìn)行有限元仿真,驗(yàn)證分析在弧形肋片最優(yōu)設(shè)計(jì)情況下的散熱效果、安全性以及永磁體的工作最高溫度。此外,在MATLAB分析時(shí),本文還就各變量尺寸與散熱性能的相關(guān)性的變化趨勢(shì)進(jìn)行了分析與說(shuō)明,為實(shí)際工況下兼顧性?xún)r(jià)比時(shí),弧形肋片尺寸與布置的選擇提供了理論依據(jù);在Fluent分析時(shí),加入了溫度場(chǎng)分析,為額外設(shè)置流體冷卻系輔助散熱提供了尺寸及布置位置的依據(jù)。最后,作為驗(yàn)證數(shù)值模擬結(jié)果正確性的手段,本文給出相應(yīng)的實(shí)驗(yàn)設(shè)計(jì)方案,并對(duì)后續(xù)研究工作提出了建議。對(duì)于永磁渦流傳動(dòng)裝置大功率情況下的不規(guī)則散熱片,以最小熱源為指導(dǎo)思想進(jìn)行最優(yōu)化散熱的研究設(shè)計(jì),提出了 MATLAB參數(shù)優(yōu)化及相關(guān)性分析、Fluent流固耦合分析與實(shí)驗(yàn)臺(tái)驗(yàn)證相結(jié)合的優(yōu)化方式,為其他輔助散熱系的設(shè)計(jì)提供了一定的理論依據(jù),為弧形散熱片在礦井下的永磁渦流傳動(dòng)裝置散熱系統(tǒng)中的推廣應(yīng)用,以及保證更大功率的磁力軟啟動(dòng)的安全性和可靠性提供了實(shí)驗(yàn)設(shè)計(jì)基礎(chǔ)。
[Abstract]:In the working process of permanent magnet eddy current transmission device, heat is produced because of eddy current, and the accumulation of heat will cause the temperature of conductor disk to rise, which is a great threat to the working safety under mine, and because of the small air gap of main follower disk, The accumulated temperature is transferred to the permanent magnet by heat convection, which results in the demagnetization failure of the permanent magnet. In addition to forced convection modes such as air cooling, water cooling and oil cooling, fin radiators are widely used in permanent magnet eddy current transmission devices, and fin radiators are popular because of their stable performance, good heat dissipation performance and low cost. Many previous studies focused on horizontal placement, forced convection of rectangular straight ribbed radiators, arc ribbed heat dissipation area is larger, heat dissipation effect is better, the work of this paper has carried on the expansion and the thorough exploration. The influence of the position and size of the radial radiator arranged on the conductor disk under the natural convection state is discussed and analyzed. And ANSYS simulation analysis, finally through the experimental verification. Based on the theory of minimum entropy production, the formula is derived and calculated. The geometric dimension of the radiator, the height of the fin, the angle 偽 between the starting point and the conductor disc, the circle angle 尾 corresponding to the rib arc of the chord length, the distance between the two parallel arcs before and after the fin, the rib plate, the angle between the two parallel arcs before and after the fin, and the angle 偽 between the starting and ending points as the rib arc of chord length are proposed. The number n is the independent variable of thermal resistance, Entropy yield Q is the objective function to analyze and design. The temperature of the conductor copper disk is calculated as the heat source by using the constant parameters of the test table, and then the optimum parameter design is carried out by using MATLAB, and the corresponding design size of the arc rib is calculated under the condition of the optimum heat dissipation performance in the reasonable design size range. Then the SolidWorks model is built with the improvement of actual working conditions, and the finite element simulation is carried out by using the fluid-solid coupling module of Fluent to verify and analyze the heat dissipation effect, safety and the working maximum temperature of the permanent magnet under the optimal design condition of the arc rib. In addition, in the MATLAB analysis, this paper also analyzes and explains the variation trend of the correlation between the variable size and the heat dissipation performance, which provides a theoretical basis for the selection of the size and arrangement of the arc rib when the performance / price ratio is taken into account in the actual working conditions. The temperature field analysis is added to the Fluent analysis, which provides the basis of the size and the arrangement position for the additional heat dissipation of the fluid cooling system. Finally, as a means to verify the correctness of the numerical simulation results, this paper gives the corresponding experimental design scheme, and puts forward some suggestions for further research work. For the irregular heat sink of the permanent magnet eddy current drive under the condition of high power, the research and design of the optimal heat dissipation is carried out with the minimum heat source as the guiding principle. The optimization method of MATLAB parameter optimization and correlation analysis is put forward, which combines fluent fluid-solid coupling analysis with test bench verification, which provides a certain theoretical basis for the design of other auxiliary heat dissipation systems. It provides the experimental design basis for the application of arc radiator in the heat dissipation system of permanent magnet eddy current drive under mine, and for ensuring the safety and reliability of more powerful magnetic soft start.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH139
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 杜毅;周愛(ài)國(guó);;永磁傳動(dòng)技術(shù)在游梁式抽油機(jī)上的應(yīng)用[J];石油機(jī)械;2017年03期
2 王洪群;黃志堅(jiān);謝明輝;周?chē)?guó)忠;虞培清;;永磁傳動(dòng)技術(shù)概述及發(fā)展前景[J];中國(guó)工程機(jī)械學(xué)報(bào);2016年06期
3 袁文琦;時(shí)劍文;孟國(guó)營(yíng);荀家進(jìn);王利棟;;礦用永磁耦合器調(diào)速特性及應(yīng)用研究[J];煤炭工程;2016年10期
4 孫中圣;李新泉;李小寧;;永磁渦流調(diào)速器研究與應(yīng)用[J];機(jī)械制造與自動(dòng)化;2016年03期
5 王漢生;;永磁傳動(dòng)技術(shù)在帶式輸送機(jī)中的應(yīng)用[J];起重運(yùn)輸機(jī)械;2015年12期
6 陳漢濤;;永磁磁力傳動(dòng)原理、應(yīng)用及前景[J];科技與企業(yè);2015年20期
7 石松寧;王大志;;永磁驅(qū)動(dòng)器斜極參數(shù)對(duì)齒槽轉(zhuǎn)矩的影響及優(yōu)化[J];電機(jī)與控制學(xué)報(bào);2015年09期
8 李延民;李申;邰志恒;;軟啟動(dòng)永磁渦流聯(lián)軸器的設(shè)計(jì)與參數(shù)分析[J];中國(guó)機(jī)械工程;2015年14期
9 王佰虎;王海燕;;可調(diào)式磁力耦合器的應(yīng)用[J];中國(guó)新技術(shù)新產(chǎn)品;2015年08期
10 尹新權(quán);李新勇;楊昀梓;張亞萍;白萬(wàn)本;;永磁傳動(dòng)器有限元分析及優(yōu)化設(shè)計(jì)[J];機(jī)械強(qiáng)度;2015年01期
,本文編號(hào):1960877
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1960877.html