真空環(huán)境下靜壓氣體軸承內(nèi)流場(chǎng)分析
本文選題:真空環(huán)境 + 靜壓氣體軸承。 參考:《中國(guó)計(jì)量大學(xué)》2016年碩士論文
【摘要】:因具有摩擦小、精度高、無(wú)污染、壽命長(zhǎng)等優(yōu)點(diǎn),氣體軸承被廣泛應(yīng)用于微電子制造和超精密定位設(shè)備中,而隨著下一代光刻曝光、激光干涉測(cè)量和半導(dǎo)體檢測(cè)技術(shù)的發(fā)展,超精密運(yùn)動(dòng)定位不僅要求定位精度更高,還要求必須在真空或超潔凈環(huán)境中進(jìn)行,但真空環(huán)境下靜壓氣體軸承性能與大氣環(huán)境下相比較變化顯著。目前對(duì)于真空條件下靜壓氣體軸承潤(rùn)滑理論的研究比較少,而且多以單一的連續(xù)流為基礎(chǔ),未考慮過(guò)渡流和分子流對(duì)軸承內(nèi)部流場(chǎng)的影響。針對(duì)此問(wèn)題,本文以單供氣孔應(yīng)用于真空環(huán)境的盤(pán)型靜壓止推軸承作為研究對(duì)象,對(duì)真空環(huán)境下軸承的氣體內(nèi)流場(chǎng)進(jìn)行了理論分析和實(shí)驗(yàn)研究,主要完成了以下幾方面的工作:(1)將真空環(huán)境氣體軸承內(nèi)流場(chǎng)分為入口區(qū)域、承載區(qū)域和密封區(qū)域三個(gè)部分分別進(jìn)行分析,其中,根據(jù)氣體薄膜的潤(rùn)滑原理,采用D-T模型和一階滑移模型對(duì)真空環(huán)境下氣體軸承承載區(qū)的潤(rùn)滑問(wèn)題進(jìn)行了重點(diǎn)研究。將軸承的參數(shù)無(wú)量綱化后,通過(guò)D-T模型分析得到,增大承載區(qū)無(wú)量綱入口壓力、無(wú)量綱入口區(qū)域半徑,減小軸承外徑和氣膜厚度的比值,可以使連續(xù)流到分子流轉(zhuǎn)變位置外移,提高了氣體軸承的相對(duì)承載能力,通過(guò)一階滑移模型分析認(rèn)為,在其他條件不變的情況下,增大邊界克努森數(shù)會(huì)使軸承的承載能力下降;(2)建立了以真空環(huán)境為邊界條件的仿真模型,采用COMSOL軟件模擬了入口區(qū)域、承載區(qū)域和密封區(qū)域的壓力場(chǎng)分布,分析認(rèn)為,入口區(qū)域的流動(dòng)復(fù)雜,但由于所占比重比較小,為軸承提供的承載力有限,而承載區(qū)域是軸承承載力的主要來(lái)源,與大氣環(huán)境下相比,真空環(huán)境下氣體軸承的承載能力有所提高,由于氣體稀薄效應(yīng),提高量少于大氣環(huán)境時(shí)軸承上表面所受的大氣壓力,密封區(qū)域的氣體壓力由于抽氣系統(tǒng)的作用變得很稀薄,需要用分子流模塊來(lái)模擬,模擬得到了不同排氣槽尺寸和氣膜厚度是的壓力分布,結(jié)果顯示氣膜厚度增大,排氣槽處的壓力降低,減小排氣槽深度有利于提高軸承的密封性能,減小排氣槽寬度,排氣槽處的壓力會(huì)增加,對(duì)軸承的密封性能的影響需綜合考慮密封寬度的增加產(chǎn)生的結(jié)果;(3)對(duì)加工的實(shí)驗(yàn)真空環(huán)境氣體軸承進(jìn)行了數(shù)值計(jì)算,并通過(guò)搭建的真空環(huán)境下靜壓氣體軸承的性能實(shí)驗(yàn)裝置,加載不同負(fù)載時(shí),測(cè)量了氣膜厚度、承載區(qū)入口壓力、一級(jí)排氣槽軸承和兩級(jí)排氣槽軸承排氣槽處壓力相應(yīng)情況下真空室的壓力,實(shí)驗(yàn)結(jié)果表明,相同負(fù)載下,真空環(huán)境時(shí)的氣膜厚度比大氣環(huán)境下有了很大增加,氣膜厚度增加時(shí),氣體軸承的泄漏量先增大后減小;(4)將實(shí)驗(yàn)結(jié)果和理論分析與數(shù)值仿真相結(jié)合來(lái)分析,總結(jié)了理論方法和數(shù)值仿真方法,對(duì)比結(jié)果表明一階滑移模型和COMSOL仿真結(jié)果與實(shí)驗(yàn)符合得比較好,另外還對(duì)真空氣體軸承的設(shè)計(jì)提出了優(yōu)化的方法,結(jié)果認(rèn)為增大排氣系統(tǒng)泵的抽速有利于降低排氣槽出的壓力,提高軸承的密封性,但要兼顧實(shí)際情況和經(jīng)濟(jì)成本來(lái)選取,對(duì)于兩級(jí)排氣槽軸承,還需合理地分配第一級(jí)和第二級(jí)密封寬度。通過(guò)本課題的研究,期望利用對(duì)真空環(huán)境氣體軸承的內(nèi)部流場(chǎng)的理論分析、仿真和實(shí)驗(yàn)研究,獲得性能計(jì)算方法和減少氣體泄漏提高軸承密封性能的方法,其中主要考慮了氣體稀薄效應(yīng)的影響,為氣體軸承在真空環(huán)境下的應(yīng)用提供一定的理論支撐,為氣體軸承的發(fā)展和進(jìn)步添磚加瓦。
[Abstract]:Because of the advantages of small friction, high precision, no pollution and long life, gas bearings are widely used in microelectronic manufacturing and ultra precision positioning equipment. With the development of the next generation photolithography, laser interferometry and semiconductor detection technology, ultra precision motion positioning requires not only higher positioning accuracy, but also the need to be vacuum or super clean. In the net environment, the performance of the static pressure gas bearing in the vacuum environment is more significant than that under the atmospheric environment. At present, there are few studies on the theory of hydrostatic bearing lubrication under the vacuum condition, and on the basis of a single continuous flow, there is no consideration of the influence of the transition flow and molecular flow on the internal flow field of the bearing. In this paper, a disc type static thrust bearing with a single supply hole should be used as the research object, the inner flow field of the gas bearing in the vacuum environment is analyzed theoretically and experimentally. The following work is completed mainly: (1) the internal flow field of the vacuum environment gas bearing is divided into the entrance area, the bearing area and the three parts of the seal area. According to the lubrication principle of the gas film, the D-T model and the first order slip model are used to study the lubrication problem of the bearing area of the gas bearing in the vacuum environment. After the dimensionless bearing parameters are dimensionless, the D-T model is obtained to increase the dimensionless entrance pressure in the bearing area, and there is no dimension entrance area half. The diameter, reducing the ratio of the outer diameter of the bearing and the thickness of the gas film, can move the continuous flow to the transition position of the molecular flow and improve the relative bearing capacity of the gas bearing. By the first order slip model, it is believed that the bearing capacity of the shaft will be reduced by the increase of the boundary kunson number in the condition that other conditions are constant; (2) the vacuum environment is established. The simulation model of boundary condition is used to simulate the pressure field distribution of the entrance area, the bearing region and the sealing area by COMSOL software. It is found that the flow of the entrance area is complex, but the bearing capacity of the bearing is limited because of the small proportion of the occupied area, and the bearing area is the main source of the bearing capacity of the bearing, compared with the atmospheric environment. In the air environment, the bearing capacity of the gas bearing is improved. Because of the gas thinning effect, the air pressure on the upper surface of the bearing is increased less than the atmospheric environment. The gas pressure in the sealing area becomes thin because of the function of the pumping system. The molecular flow module is needed to simulate the gas pressure. The size of the exhaust tank and the thickness of the gas film are simulated. It is the pressure distribution. The results show that the thickness of the gas film increases and the pressure of the exhaust groove is reduced. Reducing the depth of the exhaust groove is beneficial to improving the sealing performance of the bearing, reducing the width of the exhaust slot, increasing the pressure at the exhaust slot, and considering the effect of the increase of the seal width on the seal performance of the bearing. (3) the experiment is true for the processing. The air bearing gas bearing was numerically calculated, and the pressure of the gas film thickness, the inlet pressure of the bearing area, the pressure of the bearing area and the pressure of the two stage exhaust tank under the pressure of the vacuum chamber were measured. The experimental results showed that the pressure of the vacuum chamber under the load of the static pressure gas bearing under the vacuum environment was measured. Under the same load, the film thickness of the vacuum environment is greatly increased than that in the atmospheric environment. When the film thickness increases, the leakage of the gas bearing increases first and then decreases. (4) the theoretical method and numerical simulation method are summarized by combining the experimental results with the numerical simulation, and the comparison results show that the first order slip model and the CO are the first order slip model and the numerical simulation method. The simulation results of MSOL are in good agreement with the experiment. In addition, the optimization method for the design of the vacuum gas bearing is also put forward. The result is that increasing the pumping speed of the exhaust system pump is beneficial to reduce the pressure of the exhaust tank and improve the seal of the bearing, but the actual situation and the economic cost should be taken into consideration, and the bearing of the two stage exhaust tank must be combined. Through the research of this subject, we expect to make use of the theoretical analysis, simulation and experimental study of the internal flow field of the vacuum environment gas bearing, to obtain the method of performance calculation and to reduce the gas leakage to improve the sealing performance of the bearing. The main consideration is the effect of the gas thinning effect. The application of body bearings in vacuum environment provides some theoretical support, which will contribute to the development and progress of gas bearings.
【學(xué)位授予單位】:中國(guó)計(jì)量大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH133.36
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;氣體軸承技術(shù)交流會(huì)報(bào)導(dǎo)[J];深冷技術(shù);1975年04期
2 郭學(xué)陶;氣體軸承的現(xiàn)狀及其應(yīng)用[J];軸承;1979年04期
3 ;《氣體軸承的設(shè)計(jì)與制造》征訂啟事[J];深冷技術(shù);1987年03期
4 十合晉一 ,劉湘 ,徐楨基;《氣體軸承的設(shè)計(jì)與制造》已由黑龍江科技出版社出版[J];深冷技術(shù);1988年03期
5 齊乃明,楊國(guó)軍,劉暾;靜壓氣體軸承設(shè)計(jì)支持系統(tǒng)的研究[J];潤(rùn)滑與密封;2000年01期
6 侯 予,王 瑾,陳純正;徑向小孔靜壓氣體軸承的試驗(yàn)研究[J];潤(rùn)滑與密封;2002年02期
7 侯予,王瑾,熊聯(lián)友,陳純正;高速透平氣體軸承試驗(yàn)臺(tái)的建立[J];潤(rùn)滑與密封;2003年05期
8 姚艷霞,朱朝輝,楊金煥,夏葵,王可,陳純正;可傾瓦徑向氣體軸承在低溫透平機(jī)械中的應(yīng)用[J];低溫與特氣;2003年02期
9 樊濤,李樹(shù)森;靜壓氣體軸承技術(shù)的發(fā)展及應(yīng)用[J];林業(yè)機(jī)械與木工設(shè)備;2004年11期
10 王林忠;侯予;陳純正;;可傾瓦徑向氣體軸承的靜動(dòng)特性的理論研究[J];潤(rùn)滑與密封;2006年05期
相關(guān)會(huì)議論文 前10條
1 董吉洪;;圓盤(pán)形止推氣體軸承工程計(jì)算方法的研究[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下冊(cè))[C];1999年
2 劉賓;張君安;劉波;;高速?gòu)较驓怏w軸承的穩(wěn)定性測(cè)試及分析[A];制造技術(shù)自動(dòng)化學(xué)術(shù)會(huì)議論文集[C];2004年
3 于賀春;馬文琦;;氣體軸承技術(shù)的研究與發(fā)展[A];第四屆全國(guó)流體傳動(dòng)與控制學(xué)術(shù)會(huì)議論文集[C];2006年
4 張文明;孟光;;微轉(zhuǎn)子—?dú)怏w軸承系統(tǒng)動(dòng)力潤(rùn)滑特性研究[A];第二屆全國(guó)動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2008年
5 李啟明;張君安;劉波;;高速?gòu)较驓怏w軸承試驗(yàn)臺(tái)的試驗(yàn)研究[A];制造技術(shù)自動(dòng)化學(xué)術(shù)會(huì)議論文集[C];2004年
6 張文明;;隨機(jī)表面粗糙度對(duì)微氣體軸承性能的影響[A];The 5th 全國(guó)動(dòng)力學(xué)與控制青年學(xué)者研討會(huì)論文摘要集[C];2011年
7 張廣輝;劉占生;張金鋒;姚程;;基于傳遞函數(shù)法的動(dòng)靜混合徑向氣體軸承動(dòng)特性解析研究[A];第9屆全國(guó)轉(zhuǎn)子動(dòng)力學(xué)學(xué)術(shù)討論會(huì)ROTDYN'2010論文集[C];2010年
8 王緒勝;馬文琦;于賀春;;幾種不同結(jié)構(gòu)的靜壓徑向氣體軸承性能分析[A];中國(guó)機(jī)械工程學(xué)會(huì)流體傳動(dòng)與控制分會(huì)第六屆全國(guó)流體傳動(dòng)與控制學(xué)術(shù)會(huì)議論文集[C];2010年
9 劉暾;齊乃明;;一種提高靜壓氣體軸承剛度方法的初步分析——自主式氣體軸承[A];第五屆全國(guó)摩擦學(xué)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1992年
10 張海軍;楊琴;;微氣體軸承-轉(zhuǎn)子系統(tǒng)不平衡響應(yīng)研究[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
相關(guān)博士學(xué)位論文 前8條
1 陳昌婷;高速氣體軸承結(jié)構(gòu)性能分析與實(shí)驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2014年
2 朱建軍;彈性薄片動(dòng)壓氣體軸承的理論和試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 孫昂;高壓重載平面止推氣體軸承的流場(chǎng)特性研究[D];大連海事大學(xué);2010年
4 于賀春;高速靜壓氣體軸承—轉(zhuǎn)子系統(tǒng)的特性研究[D];大連海事大學(xué);2011年
5 張廣輝;高速動(dòng)靜壓混合氣體軸承轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)特性研究[D];哈爾濱工業(yè)大學(xué);2010年
6 楊利花;可傾瓦與彈性箔片動(dòng)壓氣體軸承的性能研究[D];西安交通大學(xué);2009年
7 周健斌;微型轉(zhuǎn)子軸承系統(tǒng)動(dòng)力學(xué)問(wèn)題研究[D];上海交通大學(xué);2009年
8 張小青;微渦輪發(fā)動(dòng)機(jī)氣體軸承—轉(zhuǎn)子系統(tǒng)非線性動(dòng)力學(xué)研究[D];北京理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 劉健;轉(zhuǎn)子—?dú)怏w軸承系統(tǒng)振動(dòng)特性的研究[D];哈爾濱工業(yè)大學(xué);2013年
2 陳素平;數(shù)控車床靜壓氣體軸系回轉(zhuǎn)誤差補(bǔ)償及控制方法的研究[D];東北林業(yè)大學(xué);2015年
3 劉洋;徑向止推氣體軸承承載力特性研究[D];大連海事大學(xué);2015年
4 謝仕龍;新型徑向動(dòng)壓波箔氣體軸承的動(dòng)態(tài)性能實(shí)驗(yàn)研究[D];南京航空航天大學(xué);2015年
5 李彥成;透平膨脹機(jī)用鼓泡型箔片動(dòng)壓徑向氣體軸承的數(shù)值分析研究[D];西安建筑科技大學(xué);2016年
6 陳建偉;精密離心機(jī)氣體軸承承載特性及穩(wěn)定性研究[D];電子科技大學(xué);2016年
7 龔希美;狹縫節(jié)流動(dòng)靜壓徑向氣體軸承的特性研究[D];中原工學(xué)院;2016年
8 元月;靜壓氣體軸承靜動(dòng)態(tài)特性分析及氣膜流場(chǎng)特性的理論研究[D];東北林業(yè)大學(xué);2016年
9 吳聲斌;氣體箔片止推軸承與多孔質(zhì)靜壓氣體軸承實(shí)驗(yàn)研究[D];湖南大學(xué);2016年
10 鄧志洪;車用燃料電池?zé)o油高速空壓機(jī)模擬實(shí)驗(yàn)臺(tái)設(shè)計(jì)及實(shí)驗(yàn)研究[D];湖南大學(xué);2016年
,本文編號(hào):1959258
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1959258.html