高速重載齒輪系統(tǒng)熱行為分析及修形設計
發(fā)布時間:2018-05-20 07:56
本文選題:齒輪系統(tǒng) + 熱行為。 參考:《北京科技大學》2015年博士論文
【摘要】:隨著工業(yè)技術的不斷進步,高速重載傳動設備在各個領域內得到了廣泛應用,齒輪系統(tǒng)熱行為已成為制約其發(fā)展的主要因素。本文以高速重載齒輪系統(tǒng)為研究主體,基于傳熱學理論和赫茲接觸理論,通過數值仿真方法、熱彈流方法研究了整個齒輪系統(tǒng)的熱行為,包括本體溫度場分布、接觸區(qū)閃溫分布、熱變形、熱彈耦合、熱膠合承載能力及動態(tài)熱特性等,為高速重載齒輪系統(tǒng)的熱設計和熱校核提供了依據。其主要研究內容如下: (1)基于赫茲接觸和傳熱學理論,通過數值仿真及熱彈流方法提出了精確的齒輪系統(tǒng)溫度場的預測方法;谟邢拊椒,在對流換熱系數計算中考慮粘壓溫和密壓溫效應,得到更為精確的本體溫度分布;以本體溫度作為熱彈流界面初始溫度,通過求解熱彈流潤滑方程組,得到沿嚙合線的閃溫和接觸溫度分布,最后在封閉功率流齒輪試驗臺上驗證和優(yōu)化了本體溫度的計算方法;并研究了壓力角、變位系數和齒廓修形等參數對本體溫度和閃溫的影響。 (2)基于齒輪嚙合原理和嚙合面法,揭示斜齒輪副接觸線總長分布規(guī)律,得到接觸線總長隨軸向重合度的變化規(guī)律,提出斜齒輪減振和降噪的設計方法。根據剛度分布和載荷平衡方程,得到斜齒輪副三維單位線載荷分布,為斜齒輪溫度場分析和熱彈耦合分析奠定了良好基礎,建立斜齒輪特征坐標系以簡化斜齒輪設計和校核過程。 (3)在本體溫度場基礎上,通過有限元方法和數值解法研究齒輪系統(tǒng)的熱變形,并研究了熱變形對載荷分布和傳動誤差的影響。通過數值計算方法研究了靜態(tài)和動態(tài)情況下接觸區(qū)內部應力分布。通過有限元方法對直齒輪和斜齒輪系統(tǒng)進行熱彈耦合分析,得到嚙合過程中的應力、熱彈變形和傳動誤差分布,研究了溫度場對齒輪系統(tǒng)接觸行為的影響,為齒廓修形提供了參考。 (4)通過熱彈流理論系統(tǒng)研究齒輪系統(tǒng)膠合承載能力。綜合分析膠合承載能力的評判標準和設計方法。通過數值仿真研究接觸點溫度隨時間變化規(guī)律;跓釓椓鞣椒ㄑ芯拷佑|區(qū)潤滑特性和熱效應,得到齒輪系統(tǒng)閃溫和油膜厚度分布,研究不同工況參數和潤滑油參數對熱彈流潤滑特性的影響,評估了不同齒輪副的膠合承載能力:綜合分析Blok理論和熱彈流理論在膠合承載能力上的應用;在動載荷基礎上,研究直齒輪系統(tǒng)瞬態(tài)熱彈流分析,得到了動態(tài)下的膠合承載結果。 (5)基于嚙合剛度分布和載荷平衡方程,研究直齒輪系統(tǒng)的齒廓修形機理,得到不同修形參數下的載荷分布和傳動誤差分布。根據熱變形和熱彈耦合分析結果確定最佳齒廓修形曲線。在靜態(tài)分析和動態(tài)分析的基礎上,,提出齒廓修形參數的選擇原則和方法。 (6)基于時變剛度和系統(tǒng)動力學模型,得到齒輪系統(tǒng)動載荷分布和動態(tài)特必,分析了動載系數隨轉速和阻尼變化規(guī)律,研究了齒輪系統(tǒng)幅頻特性和共振問題,并通過封閉功率流齒輪試驗臺研究不同潤滑情況、不同工況參數下的振動特性。 本課題山國家自然科學基金(No.51275035)資助。
[Abstract]:With the continuous progress of industrial technology, high speed heavy load transmission equipment has been widely used in various fields. The thermal behavior of gear system has become the main factor restricting its development. This paper takes the high speed heavy load gear system as the main body, based on the theory of heat transfer and the theory of Hertz contact, and studies the thermal elastohydrodynamic method through numerical simulation method. The thermal behavior of the whole gear system, including the distribution of the temperature field of the body, the flash temperature distribution in the contact area, the thermal deformation, the thermoelastic coupling, the thermal bonding carrying capacity and the dynamic thermo characteristics, provides the basis for the thermal design and heat checking of the high speed heavy load gear system. The main contents of the research are as follows:
(1) based on the Hertz contact and heat transfer theory, the accurate prediction method of the temperature field of the gear system is proposed by numerical simulation and thermal elastohydrodynamic method. Based on the finite element method, a more accurate temperature distribution of the body is obtained in the calculation of the convection heat transfer coefficient, and the body temperature is used as the initial surface of the thermal elastohydrodynamic interface. At the beginning of the temperature, the distribution of flash temperature and temperature distribution along the meshing line is obtained by solving the thermal elastohydrodynamic lubrication equations. Finally, the calculation method of the temperature of the body is verified and optimized on the closed power flow gear test bench, and the influence of the pressure angle, the variation coefficient and the tooth profile modification on the body temperature and the flash temperature is also studied.
(2) based on the gear meshing principle and meshing surface method, the distribution law of the total length of the contact line of the helical gear is revealed, and the change law of the length of the contact line with the axial coincidence degree is obtained. The design method of the vibration damping and noise reduction of the helical gear is proposed. According to the stiffness distribution and the load balance equation, the load distribution of the three dimensional unit line of the helical gear pair is obtained, which is the temperature field of the helical gear. The analysis and thermo elastic coupling analysis have laid a good foundation for establishing helical gear characteristic coordinate system to simplify the design and checking process of helical gears.
(3) on the basis of the temperature field of the body, the thermal deformation of the gear system is studied by the finite element method and numerical solution, and the influence of the thermal deformation on the load distribution and the transmission error is studied. The internal stress distribution in the contact area under static and dynamic conditions is studied by the numerical method. Through the finite element method, the system of the spur gear and the helical gear system is introduced through the finite element method. The stress, thermal elastic deformation and transmission error distribution in the meshing process are obtained by the coupled thermal elastic coupling analysis. The influence of temperature field on the contact behavior of the gear system is studied, which provides a reference for the tooth profile modification.
(4) study the gluing bearing capacity of gear system through the thermal elastohydrodynamic theory system. A comprehensive analysis of the evaluation standard and design method of the adhesive bearing capacity is made. Through numerical simulation, the temperature of contact point is studied with time. Based on the thermal elastohydrodynamic method, the lubrication characteristics and thermal effects of the contact area are studied, and the thickness distribution of the gear system flash and the oil film is obtained. The effect of different working condition parameters and lubricating oil parameters on the thermal elastohydrodynamic lubrication characteristics is investigated, and the adhesive bearing capacity of different gear pairs is evaluated. The application of Blok theory and thermal elastohydrodynamic theory on the adhesive bearing capacity is synthetically analyzed. On the basis of dynamic load, the transient thermal elastohydrodynamic analysis of the spur gear system is studied, and the dynamic adhesive bearing junction is obtained. Fruit.
(5) based on the meshing stiffness distribution and load balance equation, the tooth profile modification mechanism of the spur gear system is studied. The load distribution and transmission error distribution under different modification parameters are obtained. According to the thermal deformation and thermal elastic coupling analysis, the optimum profile modification curve is determined. On the basis of static analysis and dynamic analysis, the tooth profile modification parameters are put forward. Choose principles and methods.
(6) based on the time-varying stiffness and the system dynamics model, the dynamic load distribution and dynamic characteristic of the gear system are obtained. The variation law of the dynamic load coefficient with the speed and damping is analyzed. The amplitude frequency characteristics and resonance problems of the gear system are studied. The vibration characteristics of different lubrication conditions and different working conditions are studied by the closed power flow gear test bench.
This project is supported by the National Natural Science Foundation of China (No.51275035).
【學位授予單位】:北京科技大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TH132.41
【參考文獻】
相關期刊論文 前10條
1 朱才朝;陸波;徐向陽;劉偉輝;寧杰;;大功率船用齒輪箱系統(tǒng)熱彈耦合分析[J];船舶力學;2011年08期
2 丁玉成,王建軍,李潤方;直齒輪接觸有限元分析及輪齒熱彈變形[J];重慶大學學報(自然科學版);1987年02期
3 李潤方,丁玉成,黎豫生,湯慶平;圓柱齒輪熱彈變形數值分析[J];重慶大學學報(自然科學版);1993年01期
4 錢學毅;吳雙;;基于彈流潤滑理論的非對稱齒輪膠合強度多目標優(yōu)化[J];工程設計學報;2010年06期
5 李威;劉寧;俞必強;鄭璐晗;;齒輪裂紋對動載荷譜的影響[J];北京科技大學學報;2013年04期
6 俞必強;李威;薛建華;蔣磊;;基于動載荷譜的齒輪彎曲疲勞壽命預測[J];北京科技大學學報;2013年06期
7 王丹;陸瑞成;閆玉濤;孫志禮;;航空發(fā)動機齒輪接觸分析與修形研究[J];東北大學學報(自然科學版);2013年08期
8 江親瑜;楊震生;王松年;;齒輪膠合強度計算軟件的研制[J];大連鐵道學院學報;1992年03期
9 李桂華;費業(yè)泰;;標準漸開線齒輪熱變形時的非漸開特性研究[J];哈爾濱工業(yè)大學學報;2006年01期
10 方宗德,陳國定,沈允文;內嚙合斜齒輪的齒面閃溫計算[J];航空動力學報;1992年04期
本文編號:1913795
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1913795.html