軸承箱用磁力油封的設(shè)計(jì)和應(yīng)用研究
本文選題:磁力油封 + 磁力計(jì)算 ; 參考:《華東理工大學(xué)》2017年碩士論文
【摘要】:軸承箱是保證機(jī)泵等設(shè)備穩(wěn)定運(yùn)行的關(guān)鍵部件。傳統(tǒng)軸承箱密封方式主要為骨架唇式油封和迷宮油封等,而這些油封往往存在密封不可靠,壽命短,對(duì)軸有損害和消耗電機(jī)功率大等缺陷。本論文就是在不改變軸承箱原有整體結(jié)構(gòu)的前提下,借鑒機(jī)械密封的基本原理,采用磁力作為補(bǔ)償力來(lái)設(shè)計(jì)開(kāi)發(fā)一種適合軸承箱應(yīng)用的磁力油封,以解決軸承箱的油封問(wèn)題。論文主要進(jìn)行了以下工作:論文通過(guò)對(duì)軸承箱結(jié)構(gòu)的分析和計(jì)算,對(duì)軸承箱用磁力油封的結(jié)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì);通過(guò)對(duì)磁力的計(jì)算、磁力油封材料的選用,確定了動(dòng)靜環(huán)材料,考慮密封性能和應(yīng)用改造情況,分別設(shè)計(jì)出兩種磁力油封形式,即非集成磁力油封和集成式磁力油封。對(duì)設(shè)計(jì)的兩種磁力油封結(jié)構(gòu)進(jìn)行有限元仿真分析。采用簡(jiǎn)化的磁力油封模型,將磁力等效為提供壓緊的壓緊力,對(duì)兩種磁力油封的效果進(jìn)行了分析,并對(duì)影響密封性能的相關(guān)參數(shù)進(jìn)行了研究。結(jié)果表明兩種磁力油封系統(tǒng)均能滿(mǎn)足密封性能要求,0形圈的壓縮率為5%時(shí),系統(tǒng)具有較好的密封效果。通過(guò)對(duì)兩種磁力油封在相同試驗(yàn)參數(shù)的試驗(yàn)驗(yàn)證,表明非集成式磁力油封在實(shí)驗(yàn)過(guò)程中,其端面始終保持良好的接觸狀態(tài),泄漏量?jī)H1mL/h,遠(yuǎn)小于國(guó)家標(biāo)準(zhǔn)中要求的5mL/h;而集成式磁力油封在泄漏量高于國(guó)家標(biāo)準(zhǔn)要求。而進(jìn)一步改進(jìn)后的磁力油封,無(wú)論是泄漏量、磨損量還是摩擦熱等試驗(yàn)結(jié)果,都達(dá)到了預(yù)期效果并滿(mǎn)足了驗(yàn)收標(biāo)準(zhǔn)的要求。通過(guò)在煉化裝置現(xiàn)場(chǎng)對(duì)非集成和集成式磁力油封的工程實(shí)踐應(yīng)用,也取得了非常滿(mǎn)意的效果,表明磁力油封可以應(yīng)用于軸承箱替代傳統(tǒng)油封以實(shí)現(xiàn)動(dòng)設(shè)備的長(zhǎng)周期無(wú)泄漏運(yùn)轉(zhuǎn),為此類(lèi)磁力油封的設(shè)計(jì)及應(yīng)用提供了參考依據(jù)。
[Abstract]:Bearing box is the key component to ensure the stable operation of machine pump and other equipment. The traditional sealing methods of bearing box are mainly skeleton lip seal and labyrinth seal. These oil seals often have some defects such as unreliable seal, short life, damage to shaft and high power consumption of motor. On the premise of not changing the original integral structure of the bearing box and using the basic principle of the mechanical seal for reference, this paper designs and develops a kind of magnetic oil seal suitable for the application of the bearing box by using the magnetic force as the compensation force to solve the problem of the oil seal of the bearing box. The main work of this paper is as follows: through the analysis and calculation of the structure of the bearing box, the structure of the magnetic oil seal for the bearing box is optimized and the material of the dynamic and static ring is determined by the calculation of the magnetic force and the selection of the material for the magnetic oil seal. Considering the seal performance and application modification, two types of magnetic oil seal were designed, that is, non-integrated magnetic oil seal and integrated magnetic oil seal. The finite element simulation analysis of two magnetic oil seal structures is carried out. By using the simplified magnetic oil seal model, the magnetic force is equivalent to the compaction force to provide the compaction force. The effects of the two kinds of magnetic oil seal are analyzed, and the related parameters affecting the sealing performance are studied. The results show that the two magnetic oil seal systems can meet the requirements of sealing performance. When the compression ratio of the zero ring is 5, the system has a better sealing effect. The test results of two kinds of magnetic seal in the same test parameters show that the end face of the non-integrated magnetic oil seal always keeps in a good contact state during the experiment. The leakage volume is only 1 mL / h, which is much less than the 5 mL / h required in the national standard, while the integrated magnetic oil seal is higher than the national standard in leakage volume. The further improved magnetic oil seal, whether it is leakage, wear or friction heat, has achieved the expected results and met the requirements of the acceptance standard. Through the engineering practice of non-integrated and integrated magnetic oil seal in the refinery plant, it is shown that the magnetic oil seal can be used to replace the traditional oil seal in the bearing box to realize the long-period leakage free operation of the moving equipment. It provides a reference for the design and application of this kind of magnetic oil seal.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH136
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鐘亮;趙俊利;范社衛(wèi);;基于A(yíng)BAQUS的O形密封圈密封性能仿真研究[J];煤礦機(jī)械;2014年03期
2 楊棟君;顧伯勤;;不同金屬骨架變形特性對(duì)柔性石墨復(fù)合墊片力學(xué)性能的影響[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年04期
3 周瓊;李正美;唐建平;安琦;;唇形密封圈潤(rùn)滑性能的數(shù)值模擬[J];華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
4 金浩;曲家惠;岳明凱;;磁力密封裝置的研究與應(yīng)用[J];制造業(yè)自動(dòng)化;2011年18期
5 王洪群;虞培清;賈立文;孟繩續(xù);鄒志富;;磁力機(jī)械油封設(shè)計(jì)研究[J];機(jī)械工程師;2009年05期
6 劉興剛;陳曉穎;;氣壓機(jī)迷宮密封性能的計(jì)算方法[J];化學(xué)工程與裝備;2008年09期
7 王保森;何紅;楊偉民;;油封唇口壓力大小及分布的有限元分析[J];特種橡膠制品;2007年02期
8 彭莉,周青;磁力機(jī)械密封磁力計(jì)算及端面比壓設(shè)計(jì)[J];流體機(jī)械;2005年05期
9 高福年;汽車(chē)發(fā)動(dòng)機(jī)氟橡膠氣門(mén)閥桿油封的研制[J];橡膠工業(yè);2003年05期
10 寧保健;磁力機(jī)械油封及其應(yīng)用[J];有色設(shè)備;2002年05期
,本文編號(hào):1855035
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1855035.html