內(nèi)曲線行星齒輪泵非圓行星輪系的研究
本文選題:內(nèi)曲線行星齒輪泵 + 非圓齒輪; 參考:《安徽理工大學(xué)》2015年碩士論文
【摘要】:普通齒輪泵傳動(dòng)部分是一對(duì)圓柱齒輪,兩個(gè)齒輪相互嚙合,齒輪嚙合的進(jìn)出兩側(cè)分別于泵體和端面形成兩個(gè)密閉的容腔。齒輪轉(zhuǎn)動(dòng)過(guò)程中,兩腔的體積的變化使得嚙合處兩側(cè)排油和吸油。這種齒輪泵有結(jié)構(gòu)簡(jiǎn)單、自吸性好、壽命長(zhǎng)等優(yōu)點(diǎn),但它產(chǎn)生的噪聲比較大、流量和壓力的脈動(dòng)大、排量不具有可變性。接著人們發(fā)明了一種利用行星齒輪機(jī)構(gòu)傳遞動(dòng)力的行星齒輪泵。這種泵結(jié)構(gòu)緊湊、噪聲小,并克服了徑向力不平衡的缺點(diǎn),但它的泄漏比較大。但在較高壓和大排量的條件下,以上齒輪泵都不適合。于是,非圓行星齒輪機(jī)構(gòu)被用于泵的傳動(dòng)系統(tǒng)中,這種新型的泵叫做內(nèi)曲線行星齒輪泵。內(nèi)曲線行星齒輪泵主要由內(nèi)齒圈、太陽(yáng)輪和行星輪組成。一方面,多個(gè)行星輪在內(nèi)齒圈和太陽(yáng)輪之間沿某一節(jié)曲線作平移運(yùn)動(dòng);另一方面行星輪在繞著它的質(zhì)心作轉(zhuǎn)動(dòng)。非圓行星輪系這種運(yùn)動(dòng)關(guān)系使它們之間形成的多個(gè)密閉腔的體積發(fā)生周期性變化,從而完成吸油和排油。這種泵具有耐高壓、耐油污、脈動(dòng)小、排量大等優(yōu)點(diǎn),符合現(xiàn)代液壓機(jī)械趨于向高壓化發(fā)展的方向。因此,這種泵具有很大的研究意義。 本文主要研究的是一種內(nèi)曲線行星齒輪泵的非圓行星輪系部分,拓展對(duì)非圓齒輪的研究,希望在非圓行星輪系的設(shè)計(jì)、太陽(yáng)輪和內(nèi)齒圈參數(shù)的計(jì)算、非圓齒輪的模型的建立、非圓齒輪的靜力學(xué)分析和模態(tài)分析以及非圓齒輪的加工方面在前人的基礎(chǔ)上進(jìn)一步研究。 (1)簡(jiǎn)述了內(nèi)曲線行星齒輪泵的的結(jié)構(gòu)和原理,分析了非圓齒輪的研究成果、非圓行星輪系的應(yīng)用和發(fā)展現(xiàn)狀,本課題研究的背景和意義。 (2)研究了非圓行星齒輪機(jī)構(gòu)的運(yùn)動(dòng)特點(diǎn),先確定內(nèi)曲線行星齒輪泵的類型,初選模數(shù)。根據(jù)非圓行星輪系的運(yùn)動(dòng)特性,應(yīng)用MTLAB軟件和其他計(jì)算軟件,求出太陽(yáng)輪和內(nèi)齒圈的各個(gè)參數(shù)及節(jié)曲線方程,為下面非圓齒輪的三維模型的建立打下基礎(chǔ)。 (3)以一個(gè)類型的內(nèi)曲線行星齒輪泵為實(shí)例,建立非圓行星輪系的三維模型,研究非圓齒輪的建模方法,為非圓齒輪的仿真和分析提供實(shí)體模型,也為非圓齒輪的加工提供條件。 (4)對(duì)非圓行星輪系的太陽(yáng)輪、內(nèi)齒圈和行星輪進(jìn)行靜力學(xué)分析和模態(tài)分析,校核在一定的油壓下齒輪受到的最大應(yīng)力和最大變形量。然后與實(shí)際比較,看選擇的材料的強(qiáng)度和設(shè)計(jì)的參數(shù)是否符合要求,得出齒輪各階的振動(dòng)頻率和振型,以便有效的避免機(jī)構(gòu)或零件發(fā)生共振。 (5)簡(jiǎn)述目前條件下非圓齒輪的加工方法,研究線切割加工非圓齒輪的方法。 通過(guò)這篇文章的研究,可以找到一種求解非圓節(jié)曲線參數(shù)及方程的方法,及非圓齒輪的建模和結(jié)構(gòu)分析,為設(shè)計(jì)制造出結(jié)構(gòu)合理、性能優(yōu)越且壽命長(zhǎng)的內(nèi)曲線行星齒輪泵提供條件。
[Abstract]:The transmission part of the common gear pump is a pair of cylindrical gears, the two gears meshing each other, the two sides of the gear meshing form two closed cavities in the pump body and the end face, respectively. During the gear rotation, the volume of the two cavities changes so that the two sides of the meshing place drain oil and absorb oil. This gear pump has the advantages of simple structure, good self-priming and long life, but it produces more noise, larger pulsation of flow rate and pressure, and no variability of displacement. Then a planetary gear pump using planetary gear mechanism to transmit power was invented. The pump is compact in structure, low in noise and overcomes the shortcoming of radial force imbalance, but its leakage is relatively large. But under the condition of high pressure and large displacement, the above gear pump is not suitable. Thus, the noncircular planetary gear mechanism is used in the drive system of the pump, a new type of pump called the inner curve planetary gear pump. The inner curve planetary gear pump is mainly composed of inner gear ring, solar gear and planetary gear. On the one hand, the inner gear ring and the sun wheel move along a certain curve, and on the other hand, the planetary wheel is rotating around its center of mass. The motion relation of non-circular planetary gear trains periodically changes the volume of several closed cavities formed between them, thus accomplishing oil absorption and oil expulsion. This kind of pump has the advantages of high pressure resistance, oil pollution resistance, small pulsation, large displacement and so on, which is in line with the development trend of modern hydraulic machinery towards high pressure. Therefore, this kind of pump has the very big research significance. This paper mainly studies the non-circular planetary gear system of a kind of inner curve planetary gear pump, and extends the research on non-circular gear. It is hoped that the design of the non-circular planetary gear system, the calculation of the parameters of the solar wheel and the inner gear ring, the establishment of the model of the non-circular gear, the design of the non-circular planetary gear system, the calculation of the parameters of the solar gear and the inner gear ring, The static and modal analysis of non-circular gears and the machining of non-circular gears are further studied on the basis of previous studies. 1) the structure and principle of inner curve planetary gear pump are briefly introduced, the research results of non-circular gear, the application and development status of non-circular planetary gear train, and the background and significance of this research are analyzed. In this paper, the kinematic characteristics of non-circular planetary gear mechanism are studied. The type of inner curve planetary gear pump and the primary modulus are determined. According to the motion characteristics of the non-circular planetary gear train, the parameters and the nodal curve equations of the solar wheel and the inner gear ring are obtained by using MTLAB software and other calculation software, which lays the foundation for the establishment of the three-dimensional model of the lower non-circular gear. Taking a type of inner curved planetary gear pump as an example, the three-dimensional model of non-circular planetary gear train is established, and the modeling method of non-circular gear is studied, which provides a solid model for the simulation and analysis of non-circular gear, and also provides conditions for the machining of non-circular gear. (4) static analysis and modal analysis of solar gear, inner gear ring and planetary gear of non-circular planetary gear train are carried out to check the maximum stress and maximum deformation of the gear under certain oil pressure. Then compared with the practice, the strength of the selected material and the design parameters meet the requirements, and the vibration frequency and mode shape of the gear are obtained, in order to effectively avoid the resonance of the mechanism or parts. In this paper, the machining methods of non-circular gears under current conditions are briefly described, and the methods of wire cutting for non-circular gears are studied. Through the research of this paper, we can find a method to solve the parameter and equation of non-circular curve, and the modeling and structure analysis of non-circular gear, and make the structure reasonable for the design and manufacture. Superior performance and long life of the inner curve planetary gear pump to provide the conditions.
【學(xué)位授予單位】:安徽理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH132.41;TH325
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何貴平;胡赤兵;靳嵐;剡昌鋒;安宗文;段紅燕;;外嚙合非圓齒輪加工模型及根切特性研究[J];蘭州理工大學(xué)學(xué)報(bào);2006年06期
2 胡赤兵;孔德永;張敏;張玲;劉永平;;非圓齒輪的實(shí)體建模方法與線切割加工仿真[J];蘭州理工大學(xué)學(xué)報(bào);2011年04期
3 欒振輝;;內(nèi)曲線行星齒輪泵的結(jié)構(gòu)原理[J];安徽理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
4 陳英;荊寶德;王義強(qiáng);;外嚙合齒輪泵內(nèi)泄漏理論模型的建立及參數(shù)優(yōu)化[J];機(jī)床與液壓;2007年10期
5 崔希烈;;非圓齒輪齒廓分析(一)[J];齒輪;1985年06期
6 李建生;李華敏;;變中心距非圓行星齒輪機(jī)構(gòu)節(jié)曲線設(shè)計(jì)[J];機(jī)械傳動(dòng);1993年02期
7 賈松,胡青春;基于CAXA的非圓齒輪的三維造型與設(shè)計(jì)[J];機(jī)械傳動(dòng);2005年01期
8 葉友東;周哲波;;基于ANSYS直齒圓柱齒輪有限元模態(tài)分析[J];機(jī)械傳動(dòng);2006年05期
9 太田浩;非圓齒輪的設(shè)計(jì)[J];機(jī)械工程師;1996年05期
10 徐曉俊,黃勇,唐德威;非圓行星齒輪液壓馬達(dá)的參數(shù)化計(jì)算機(jī)輔助設(shè)計(jì)系統(tǒng)[J];機(jī)械科學(xué)與技術(shù);1997年02期
相關(guān)博士學(xué)位論文 前1條
1 田芳勇;非圓齒輪數(shù)控滾切加工理論與自動(dòng)編程系統(tǒng)研究[D];蘭州理工大學(xué);2012年
,本文編號(hào):1824660
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1824660.html