柱塞式靜液壓變矩器研究
本文選題:變矩器 + 柱塞式耦合器。 參考:《太原科技大學(xué)》2017年碩士論文
【摘要】:節(jié)能、綠色、環(huán)保已逐漸成為當(dāng)代社會的發(fā)展潮流,特別是2016年冬季全國大范圍內(nèi)受到的霧霾嚴(yán)重影響,使人們意識到節(jié)能環(huán)保迫在眉睫。工程機械作為國民經(jīng)濟(jì)建設(shè)中必不可少的使用工具,對環(huán)境造成的危害不容小覷,因此,開發(fā)高效節(jié)能的傳動方式作為實現(xiàn)工程機械節(jié)能減排的一種有效途徑,已經(jīng)成為科研人員的一個主要研究方向。本文在基于柱塞式靜液壓耦合器的基礎(chǔ)上提出了柱塞式靜液壓變矩器。該變矩器由斜盤旋轉(zhuǎn)柱塞泵和恒壓變量馬達(dá)組成,泵和馬達(dá)共用一個轉(zhuǎn)子,動力輸出軸與轉(zhuǎn)子相連。當(dāng)外負(fù)載力較低,只由柱塞泵傳遞動力,當(dāng)外負(fù)載增大時,由柱塞泵和變量馬達(dá)共同作用來傳遞動力。柱塞式靜液壓變矩器與傳統(tǒng)液力變矩器相比具有高效范圍寬、易匹配等優(yōu)點,與靜液壓傳動相比具有功率重量比更大、傳動效率更高等優(yōu)點。為了達(dá)到柱塞式靜液壓變矩器結(jié)構(gòu)緊湊的目的并符合設(shè)計要求,本文采用理論計算與計算機仿真計算相結(jié)合的設(shè)計方法。首先,對柱塞變矩器核心部件進(jìn)行運動學(xué)和動力學(xué)理論分析,推導(dǎo)出了柱塞速度和加速度與馬達(dá)調(diào)節(jié)參數(shù)之間的關(guān)系式,用MATLAB軟件分別分析了泵柱塞和馬達(dá)柱塞與柱塞孔間的作用力,并畫出其隨轉(zhuǎn)子轉(zhuǎn)動的變化趨勢曲線,發(fā)現(xiàn)泵柱塞和馬達(dá)柱塞都是柱塞前端受力比后端受力惡劣,并且當(dāng)柱塞處于下死點時柱塞與缸孔間的作用力達(dá)到最大;在柱塞式靜液壓變矩器分別處于耦合狀態(tài)和變矩狀態(tài)時,對轉(zhuǎn)子進(jìn)行受力分析,推導(dǎo)出了集流盤開口偏移量與軸向軸承半徑之間的關(guān)系式和徑向軸承安裝位置。然后,對泵和馬達(dá)的柱塞副和滑靴副進(jìn)行PV值核算,并用MATLAB軟件校核了柱塞強度,研究發(fā)現(xiàn),柱塞磨損最惡劣的位置并不是發(fā)生在上下死點位置處,而是轉(zhuǎn)過一定的角度,柱塞前端更容易磨損;在確定馬達(dá)采用端面配流和柱塞泵采用閥配流方式后,根據(jù)設(shè)計公式初步確定出配流盤內(nèi)外密封帶、錯配角、三角槽底棱角等參數(shù)和配流閥的錐角、通徑和彈簧參數(shù)。最后,為了驗證柱塞式靜液壓變矩器原理的可行性,運用AMEsim仿真軟件搭建閥配流斜盤旋轉(zhuǎn)柱塞泵模型和端面配流柱塞馬達(dá)模型,并對其進(jìn)行仿真,得出泵和馬達(dá)柱塞受力曲線;在確定了各零部件尺寸后,用專業(yè)三維建模軟件Solidworks搭建柱塞式靜液壓變矩器幾何模型,然后導(dǎo)入ADAMS軟件通過施加相關(guān)約束建立其動力學(xué)模型,在相同輸入轉(zhuǎn)速不同斜盤傾角下對該變矩器進(jìn)行仿真分析,得到柱塞的運動曲線和在不同斜盤傾角下的輸入、輸出扭矩特性曲線,結(jié)果表明該模型具有扭矩放大功能,驗證了原理的可行性。柱塞式靜液壓變矩器作為新型動力傳遞元件,符合于液壓技術(shù)的發(fā)展趨勢,對其進(jìn)行進(jìn)一步改進(jìn)可用于混合動力,相信該新型液壓元件有著良好的發(fā)展前景。
[Abstract]:Energy saving, green and environmental protection have gradually become the trend of development in contemporary society, especially the severe impact of haze on the whole country in the winter of 2016, which makes people realize that energy saving and environmental protection is imminent. Construction machinery, as an indispensable tool in national economic construction, can not be underestimated because of its harm to the environment. Therefore, the development of efficient and energy-saving transmission mode is an effective way to realize energy saving and emission reduction of construction machinery. Has become a major research direction for researchers. This paper presents a plunger hydrostatic torque converter based on plunger hydrostatic coupler. The torque converter consists of a rotary piston pump and a constant pressure variable motor. The pump and motor share a rotor and the power output shaft is connected to the rotor. When the external load is low, only the piston pump transfers the power. When the external load increases, the piston pump and the variable motor act together to transfer the power. Compared with the traditional hydraulic torque converter, the plunger hydrostatic torque converter has the advantages of wide range of efficiency, easy matching and so on. Compared with hydrostatic transmission, the plunger hydrostatic torque converter has the advantages of higher power / weight ratio and higher transmission efficiency. In order to achieve the purpose of compact structure of plunger hydrostatic torque converter and meet the design requirements, the design method of combining theoretical calculation with computer simulation calculation is adopted in this paper. Firstly, the kinematics and dynamics of the core components of the plunger torque converter are analyzed, and the relationship between the plunger speed and acceleration and the motor regulation parameters is derived. The force between pump plunger and motor plunger and plunger hole is analyzed by MATLAB software, and the changing trend curve with rotor rotation is drawn. It is found that both pump plunger and motor plunger have worse force at the front end than at back end. And when the plunger is at the lower dead point, the force between the plunger and the cylinder hole reaches the maximum; when the plunger hydrostatic torque converter is in the coupling state and the torque state, the force on the rotor is analyzed. The relationship between the radial bearing radius and the opening offset of the collector disc and the position of the radial bearing are derived. Then, the PV value of plunger pair and slipper pair of pump and motor was calculated, and the strength of plunger was checked with MATLAB software. The research found that the worst position of plunger wear occurred not at the dead point of the top and bottom, but at a certain angle. The front end of the plunger is easier to wear out. After determining that the motor adopts the end flow distribution mode and the piston pump adopts the valve distribution mode, according to the design formula, the parameters such as the inner and outer sealing belt, the mismatch angle, the bottom prism angle of the triangle groove and the conical angle of the flow distribution valve are preliminarily determined according to the design formula. Diameter and spring parameters. Finally, in order to verify the feasibility of the principle of the plunger hydrostatic torque converter, the AMEsim simulation software is used to build the model of the rotary piston pump with valve and the model of the end face distribution plunger motor, and the force curve of the pump and motor plunger is obtained by simulation. After determining the dimensions of the components, the geometric model of the plunger hydrostatic torque converter is built with the professional 3D modeling software Solidworks, and then the dynamic model of the plunger hydrostatic torque converter is established by introducing the ADAMS software through imposing the relevant constraints. The torque converter is simulated and analyzed under the same input speed and different inclination angle of the skew disk. The kinematic curve of the plunger and the characteristic curve of the input and output torque under the different inclination angle of the plunger are obtained. The results show that the model has the function of torque amplification. The feasibility of the principle is verified. As a new type of power transfer element, plunger hydrostatic torque converter is in line with the development trend of hydraulic technology. It can be further improved for hybrid power. It is believed that the new hydraulic element has a good development prospect.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH137.332
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程旭華;賈躍虎;安高成;丁小寧;劉薇;;新型葉片式靜液壓耦合器[J];液壓氣動與密封;2015年11期
2 劉景彬;紀(jì)宇龍;安高成;葉雯雯;;新型柱塞式靜液壓偶合器[J];煤礦機械;2015年10期
3 魏巍;劉城;閆清東;;柔性扁平循環(huán)圓液力元件葉柵系統(tǒng)設(shè)計方法[J];農(nóng)業(yè)機械學(xué)報;2011年04期
4 劉春寶;朱喜林;馬文星;;轎車液力變矩器扁平率研究[J];農(nóng)業(yè)機械學(xué)報;2010年10期
5 吳光強;陳曙光;王歡;;液力變矩器葉柵角度參數(shù)優(yōu)化及算法[J];同濟(jì)大學(xué)學(xué)報(自然科學(xué)版);2009年06期
6 魏巍;閆清東;;液力變矩器泵輪葉片優(yōu)化設(shè)計研究[J];系統(tǒng)仿真學(xué)報;2008年23期
7 孟亞,劉長生,戴奇明,李勝建;工程機械液力變矩器傳動損失的研究[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2005年03期
8 安高成,呂翠萍,王明亮,王平,王明智;柱塞泵配流副三角槽的分析設(shè)計[J];太原重型機械學(xué)院學(xué)報;2004年04期
9 嚴(yán)鵬,吳光強;液力變矩器性能分析[J];同濟(jì)大學(xué)學(xué)報(自然科學(xué)版);2004年11期
10 魏巍,張利霞,閆清東;液力變矩器流場計算可視化及其OpenGL實現(xiàn)[J];機床與液壓;2004年10期
相關(guān)博士學(xué)位論文 前3條
1 張斌;軸向柱塞泵的虛擬樣機及油膜壓力特性研究[D];浙江大學(xué);2009年
2 馬吉恩;軸向柱塞泵流量脈動及配流盤優(yōu)化設(shè)計研究[D];浙江大學(xué);2009年
3 楊曙東;基于海水潤滑的中高壓海水液壓泵研究[D];華中科技大學(xué);2005年
相關(guān)碩士學(xué)位論文 前7條
1 何松霖;扁平化液力變矩器內(nèi)流場特性及導(dǎo)輪葉形研究[D];江蘇大學(xué);2016年
2 朱艷平;裝載機雙渦輪液力變矩器開發(fā)研究[D];長安大學(xué);2015年
3 李若國;一種裝載機用液力變速器的研究[D];山東大學(xué);2015年
4 張三喜;雙作用液壓變矩器的理論研究[D];燕山大學(xué);2014年
5 陳俊遠(yuǎn);液壓負(fù)載敏感變矩器研究[D];蘭州理工大學(xué);2011年
6 劉仙船;基于虛擬樣機的斜柱塞泵仿真研究[D];西南交通大學(xué);2010年
7 馮翔;盤配流式海水柱塞泵設(shè)計及仿真研究[D];華中科技大學(xué);2008年
,本文編號:1803662
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1803662.html