基于K-S匹配與證據理論的復合故障診斷的研究
本文選題:復合故障 + K-S匹配; 參考:《太原理工大學》2017年碩士論文
【摘要】:隨著現代工業(yè)系統(tǒng)和制造裝備逐漸向著大型化、復雜化和精密化的方向發(fā)展,大型旋轉機械設備在現代工業(yè)中占有舉足輕重的地位,它們良好的運行狀況直接關系到整個工廠安全正常的生產運作。人們迫切希望能及時了解系統(tǒng)的運行狀態(tài),提高系統(tǒng)的可靠性和有效性。目前有許多的學者致力于對旋轉機械復合故障診斷進行研究,復合故障已經成為當前研究的熱點。由于多重故障并發(fā)時,其表現形式是多種多樣的,不同故障特征相互混雜呈現出多耦合、模糊性等特征,給故障診斷帶來了極大的挑戰(zhàn)。隨著信息技術和人工智能的逐漸發(fā)展,新的技術不斷地移植、應用到機械故障診斷中,豐富了故障診斷的理論與技術,推動著故障診斷向跟高層次發(fā)展。國內外相關研究工作大多集中在故障預測、故障模型設計、故障目標跟蹤等方面。本文在研讀大量文獻的基礎上,結合課題的相關研究背景,采用的是一種基于K-S和證據理論相結合的集成診斷方法,進行的工作主要如下:(1)在實際工況下運行的旋轉機械,其發(fā)生的故障通常都是復合故障,現有的診斷方法對這一問題很難處理。本文通過K-S匹配計算故障的相似度,然后通過證據理論處理其沖突,結果表明,該方法能快速地判斷機組上常見的軸系復合故障。(2)鑒于Kolmogorov Smilnov在雙樣本數據匹配具有的優(yōu)點,本文用K-S對無量綱數據樣本的累積分布函數曲線檢驗,通過線線匹配,能較好地識別出故障。(3)針對旋轉機械復合故障的復雜性以及不確定性,本文充分利用證據理論處理不確定信息方面的優(yōu)勢,對K-S匹配后的結果進行證據理論數據融合,最后在大機組上多次實驗,驗證了K-S匹配與證據理論數據融合方法能快速、準確地判斷大機組上的復合故障。
[Abstract]:With the development of modern industrial system and manufacturing equipment towards the direction of large scale, complexity and precision, large-scale rotating machinery and equipment play an important role in modern industry.Their good operation condition is directly related to the safe and normal production operation of the whole plant.People are eager to know the running state of the system in time and improve the reliability and effectiveness of the system.At present, many scholars devote themselves to the research of complex fault diagnosis of rotating machinery, and compound fault has become a hot research topic.When multiple faults are concurrent, their forms are various, and different fault features present multiple coupling and fuzziness, which brings a great challenge to fault diagnosis.With the gradual development of information technology and artificial intelligence, new technologies are constantly transplanted and applied to mechanical fault diagnosis, which enriches the theory and technology of fault diagnosis and promotes the development of fault diagnosis to a higher level.Most of the related researches at home and abroad focus on fault prediction, fault model design, fault target tracking and so on.On the basis of reading a large number of documents and combining the related research background of the subject, this paper adopts an integrated diagnosis method based on K-S and evidence theory. The main work of this paper is as follows: 1) rotating machinery running under actual working conditions.The fault occurring is usually a complex fault, which is difficult to deal with by the existing diagnosis methods.In this paper, the similarity of faults is calculated by K-S matching, and then the conflict is dealt with by evidence theory. The results show that this method can quickly judge the common complex fault of shafting on the unit. (2) in view of the advantages of Kolmogorov / Smilnov in double sample data matching,In this paper, we use K-S to test the cumulative distribution function curve of dimensionless data samples. By line and line matching, we can better identify the fault.This paper makes full use of the advantage of evidence theory in dealing with uncertain information, carries on the evidence theory data fusion to the K-S matching result after the result, finally many experiments on the big unit, has verified the K-S matching and the evidence theory data fusion method to be quick,Accurate judgment of complex faults on large units.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH17
【參考文獻】
相關期刊論文 前10條
1 程聲烽;程小華;楊露;;基于改進粒子群算法的小波神經網絡在變壓器故障診斷中的應用[J];電力系統(tǒng)保護與控制;2014年19期
2 趙秋月;左萬利;田中生;王英;;一種基于改進D-S證據理論的信任關系強度評估方法研究[J];計算機學報;2014年04期
3 熊國江;石東源;朱林;陳祥文;;基于徑向基函數神經網絡的電網模糊元胞故障診斷[J];電力系統(tǒng)自動化;2014年05期
4 周東華;史建濤;何瀟;;動態(tài)系統(tǒng)間歇故障診斷技術綜述[J];自動化學報;2014年02期
5 石東源;熊國江;陳金富;李銀紅;;基于徑向基函數神經網絡和模糊積分融合的電網分區(qū)故障診斷[J];中國電機工程學報;2014年04期
6 韓德強;楊藝;韓崇昭;;DS證據理論研究進展及相關問題探討[J];控制與決策;2014年01期
7 徐成剛;;基于非線性預測濾波和UKF的狀態(tài)估計方法[J];科技信息;2013年19期
8 王學斌;徐建宏;張章;;卡爾曼濾波器參數分析與應用方法研究[J];計算機應用與軟件;2012年06期
9 李月;徐余法;陳國初;苗銳;俞金壽;;D-S證據理論在多傳感器故障診斷中的改進及應用[J];東南大學學報(自然科學版);2011年S1期
10 鄭蕊蕊;趙繼印;趙婷婷;李敏;;基于遺傳支持向量機和灰色人工免疫算法的電力變壓器故障診斷[J];中國電機工程學報;2011年07期
相關博士學位論文 前4條
1 夏麗莎;基于隱馬爾可夫模型的故障診斷及相關算法研究[D];華中科技大學;2014年
2 楊柳松;基于小波分析與神經網絡滾動軸承故障診斷方法的研究[D];東北林業(yè)大學;2013年
3 梁偉光;基于證據理論的在軌航天器故障診斷方法研究[D];中國科學技術大學;2011年
4 張清華;基于人工免疫系統(tǒng)的機組故障診斷技術研究[D];華南理工大學;2004年
,本文編號:1751397
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1751397.html