天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)電工程論文 >

基于VMD的滾動(dòng)軸承故障診斷研究

發(fā)布時(shí)間:2018-03-30 12:07

  本文選題:故障診斷 切入點(diǎn):滾動(dòng)軸承 出處:《蘭州交通大學(xué)》2017年碩士論文


【摘要】:隨著中國工業(yè)化進(jìn)程不斷推進(jìn),不斷有生產(chǎn)機(jī)器開始進(jìn)入老化期,在將來會(huì)達(dá)到一個(gè)龐大的數(shù)量。滾動(dòng)軸承是旋轉(zhuǎn)機(jī)械重要零部件之一,也是占比最大的故障源之一。因此,開展?jié)L動(dòng)軸承故障診斷研究具有重要的現(xiàn)實(shí)意義和經(jīng)濟(jì)意義。模態(tài)提取是滾動(dòng)軸承故障診斷的關(guān)鍵,尤其是對(duì)滾動(dòng)軸承故障特征的提取。滾動(dòng)軸承振動(dòng)信號(hào)屬于典型的非線性信號(hào),特征提取的質(zhì)量直接影響故障診斷結(jié)果。針對(duì)故障特征提取與識(shí)別問題,研究內(nèi)容如下:(1)通過介紹變分模態(tài)分解方法(Variational Mode Decomposition,VMD)中的本征模態(tài)函數(shù)、維納濾波和解析信號(hào)的基本概念,敘述了如何構(gòu)造變分模態(tài)分解方法中的信號(hào)約束問題,并隨后介紹了如何使用變分模態(tài)分解方法如何求解約束問題。為了驗(yàn)證變分模態(tài)分解方法的優(yōu)越性,分別用變分模態(tài)分解方法和經(jīng)驗(yàn)?zāi)B(tài)分解方法對(duì)噪聲干擾信號(hào)和脈沖干擾信號(hào)進(jìn)行分解。結(jié)果表明,變分模態(tài)方法在噪聲魯棒性和脈沖干擾性上具有明顯優(yōu)勢。(2)使用基于峭度準(zhǔn)則VMD及平穩(wěn)小波的軸承故障診斷方法,提取強(qiáng)噪聲背景下的滾動(dòng)軸承故障特征。首先使用變分模態(tài)分解對(duì)同一負(fù)荷下的故障信號(hào)進(jìn)行預(yù)處理,再通過峭度準(zhǔn)則篩選出最佳和次佳信號(hào)分量進(jìn)行重構(gòu)并使用平穩(wěn)小波進(jìn)行去噪處理,最后分析信號(hào)的包絡(luò)譜來對(duì)軸承的故障類型進(jìn)行判斷。通過對(duì)仿真滾動(dòng)軸承內(nèi)圈故障信號(hào)進(jìn)行分析,該方法可成功提取出微弱特征頻率信息,噪聲抑制效果優(yōu)于EMD(Empirical Mode Decomposition,EMD)。由此表明,基于峭度準(zhǔn)則VMD及平穩(wěn)小波的軸承故障診斷可有效提取強(qiáng)聲背景下的滾動(dòng)軸承早期故障信息,具有一定的可靠性和應(yīng)用價(jià)值。(3)使用基于VMD瞬時(shí)能量法及MPSO-SVM的軸承故障診斷方法,實(shí)現(xiàn)軸承振動(dòng)故障的較精確診斷。首先使用變分模態(tài)分解方法分解軸承振動(dòng)信號(hào),再根據(jù)VMD分量特性篩選出包含主要故障信息的分量進(jìn)行瞬時(shí)能量特性計(jì)算并構(gòu)建故障特征向量,最后將其輸入變異粒子群算法(Mutation Particle Swarm Optimization,MPSO)優(yōu)化后的支持向量機(jī)(Support Vector Machine,SVM)分類器中來區(qū)分滾動(dòng)軸承的工作狀態(tài)和故障類型。對(duì)軸承正常狀態(tài)、內(nèi)圈故障及外圈故障信號(hào)進(jìn)行仿真實(shí)驗(yàn),該方法可較精確的對(duì)軸承振動(dòng)信號(hào)進(jìn)行故障分類,具有良好的分類效果。
[Abstract]:As China's industrialization continues to advance, more and more production machines begin to enter the aging period, which will reach a large number in the future. Rolling bearings are one of the important parts of rotating machinery and one of the biggest fault sources. The research of rolling bearing fault diagnosis has important practical and economic significance. Modal extraction is the key of rolling bearing fault diagnosis. The vibration signal of rolling bearing is a typical nonlinear signal, and the quality of feature extraction directly affects the fault diagnosis result. The research contents are as follows: (1) by introducing the intrinsic mode functions, Wiener filtering and the basic concepts of analytical signals in the variational Mode decomposition method (VMD), the paper describes how to construct the signal constraint problem in the variational mode decomposition method. Then it introduces how to use variational mode decomposition method to solve constraint problem, in order to verify the superiority of variational mode decomposition method. The variational mode decomposition method and the empirical mode decomposition method are used to decompose the noise interference signal and the pulse interference signal respectively. Variational mode method has obvious advantages in noise robustness and impulse interference. (2) the bearing fault diagnosis method based on kurtosis criterion VMD and stationary wavelet is used. The fault characteristics of rolling bearing under strong noise background are extracted. Firstly, the fault signals under the same load are preprocessed by variational mode decomposition. Then the best and sub-optimal signal components are selected by kurtosis criterion for reconstruction, and the stationary wavelet is used to Denoise the signal. Finally, the envelope spectrum of the signal is analyzed to judge the fault type of the bearing. By analyzing the fault signal of the inner ring of the rolling bearing, the weak characteristic frequency information can be extracted successfully by this method. The noise suppression effect is better than that of EMD(Empirical Mode Decomposition.Therefore, it is shown that bearing fault diagnosis based on kurtosis criterion VMD and stationary wavelet can effectively extract the early fault information of rolling bearing under strong sound background. The method of bearing fault diagnosis based on VMD instantaneous energy method and MPSO-SVM is used to realize the accurate diagnosis of bearing vibration fault. First, the variational mode decomposition method is used to decompose the bearing vibration signal. Then according to the characteristics of VMD components, the components containing the main fault information are selected to calculate the instantaneous energy characteristics and the fault feature vectors are constructed. Finally, the support vector machine (SVM) support Vector Machine (SVM) classifier is used to distinguish the working state and fault type of rolling bearing by input mutation Particle Swarm optimization (MPSO). The simulation experiments are carried out on the normal state of bearing, inner ring fault and outer ring fault signal. This method can classify bearing vibration signals accurately and has good classification effect.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH133.33

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 錢林;康敏;傅秀清;王興盛;費(fèi)秀國;;基于VMD的自適應(yīng)形態(tài)學(xué)在軸承故障診斷中的應(yīng)用[J];振動(dòng)與沖擊;2017年03期

2 張淑清;黃文靜;胡永濤;宿新爽;陸超;姜萬錄;;基于總體平均經(jīng)驗(yàn)?zāi)J椒纸饨旗睾突旌螾SO-BP算法的軸承故障診斷方法[J];中國機(jī)械工程;2016年22期

3 張東;馮志鵬;;基于變分模式分解和微積分增強(qiáng)能量算子的滾動(dòng)軸承故障診斷[J];工程科學(xué)學(xué)報(bào);2016年09期

4 黃璇;郭立紅;李姜;于洋;;改進(jìn)粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的目標(biāo)威脅估計(jì)[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2017年03期

5 張亞超;劉開培;秦亮;;基于VMD-SE和機(jī)器學(xué)習(xí)算法的短期風(fēng)電功率多層級(jí)綜合預(yù)測模型[J];電網(wǎng)技術(shù);2016年05期

6 陳法法;楊勇;馬婧華;陳從平;;信息熵與優(yōu)化LS-SVM的軸承性能退化模糊;A(yù)測[J];儀器儀表學(xué)報(bào);2016年04期

7 姜久亮;劉文藝;侯玉潔;仲召明;陳思瑤;;基于內(nèi)積延拓LMD及SVM的軸承故障診斷方法研究[J];振動(dòng)與沖擊;2016年06期

8 石瑞敏;楊兆建;;基于LMD能量特征的滾動(dòng)軸承故障診斷方法[J];振動(dòng).測試與診斷;2015年05期

9 向丹;岑健;;基于EMD熵特征融合的滾動(dòng)軸承故障診斷方法[J];航空動(dòng)力學(xué)報(bào);2015年05期

10 劉長良;武英杰;甄成剛;;基于變分模態(tài)分解和模糊C均值聚類的滾動(dòng)軸承故障診斷[J];中國電機(jī)工程學(xué)報(bào);2015年13期

相關(guān)博士學(xué)位論文 前1條

1 程軍圣;基于Hilbert-Huang變換的旋轉(zhuǎn)機(jī)械故障診斷方法研究[D];湖南大學(xué);2005年

相關(guān)碩士學(xué)位論文 前1條

1 王志武;強(qiáng)噪聲背景下機(jī)械故障微弱信號(hào)特征提取方法研究[D];中北大學(xué);2014年

,

本文編號(hào):1685839

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/1685839.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5404c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
太香蕉久久国产精品视频| 国产欧美日产中文一区| 热久久这里只有精品视频| 国产av精品高清一区二区三区| 亚洲精品日韩欧美精品| 91人妻人人揉人人澡人| 久久精品中文扫妇内射| 又黄又爽禁片视频在线观看| 国产三级欧美三级日韩三级| 我的性感妹妹在线观看| 日本午夜精品视频在线观看| 久久本道综合色狠狠五月 | 亚洲欧美国产网爆精品| 亚洲丁香婷婷久久一区| 亚洲av又爽又色又色| 成人综合网视频在线观看| 亚洲熟女熟妇乱色一区| 精品一区二区三区中文字幕| 九九热视频免费在线视频| 久久中文字幕中文字幕中文| 在线观看国产成人av天堂野外| 亚洲在线观看福利视频| 情一色一区二区三区四| 欧美午夜一级艳片免费看| 国产老熟女乱子人伦视频| 国产中文字幕一二三区| 91偷拍裸体一区二区三区| 午夜视频在线观看日韩| 女人精品内射国产99| 麻豆精品视频一二三区| 伊人久久青草地婷婷综合| 爱在午夜降临前在线观看| 亚洲一区二区三区四区| 亚洲国产精品久久琪琪| 开心激情网 激情五月天| 麻豆tv传媒在线观看| 欧美激情中文字幕综合八区| 国产一级特黄在线观看| 日韩av亚洲一区二区三区| 五月的丁香婷婷综合网| 亚洲国产精品国自产拍社区|