基于控制速度分布的離心葉輪優(yōu)化設(shè)計(jì)系統(tǒng)的研究
本文選題:離心葉輪 切入點(diǎn):流動(dòng)效應(yīng) 出處:《浙江大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:離心風(fēng)機(jī)作為一種輸送氣體的通用機(jī)械設(shè)備,在水泥、電力、化工、鋼鐵等工業(yè)領(lǐng)域廣泛應(yīng)用,并且這些領(lǐng)域使用的離心風(fēng)機(jī)存在數(shù)量大、單機(jī)功率高的特點(diǎn),所以能耗巨大。因此建立針對(duì)于大型工業(yè)用離心風(fēng)機(jī)葉輪優(yōu)化設(shè)計(jì)系統(tǒng)具有重要經(jīng)濟(jì)效益。本文建立了包含葉輪總體參數(shù)和結(jié)構(gòu)型線優(yōu)化的離心風(fēng)機(jī)葉輪優(yōu)化設(shè)計(jì)系統(tǒng),實(shí)現(xiàn)了離心葉輪的整體優(yōu)化設(shè)計(jì)。首先,本文研究了離心葉輪流道內(nèi)造成流動(dòng)損失的流動(dòng)效應(yīng)(邊界層增長(zhǎng)與分離、二次流、分層效應(yīng)等)的形成機(jī)理以及基本特征,分析了這些復(fù)雜流動(dòng)效應(yīng)與流動(dòng)參數(shù)以及流道內(nèi)速度分布間的相互關(guān)系,提出了進(jìn)口加速系數(shù)、當(dāng)量擴(kuò)張角、載荷系數(shù)、進(jìn)口減速比、最大減速比等控制參數(shù)。其次通過控制參數(shù)作為橋梁,建立了葉輪結(jié)構(gòu)總體參數(shù)與內(nèi)部流動(dòng)特征間的關(guān)系,確立了既能控制流動(dòng)損失又能保證設(shè)計(jì)要求的優(yōu)化準(zhǔn)則和目標(biāo)函數(shù),實(shí)現(xiàn)了總體參數(shù)的優(yōu)化設(shè)計(jì)。通過理論分析得到了實(shí)現(xiàn)子午面二次流效應(yīng)最小化的設(shè)計(jì)準(zhǔn)則,通過給定合理的子午速度沿流線的分布,實(shí)現(xiàn)了前盤型線的優(yōu)化設(shè)計(jì)。以速度分布作為橋梁,建立了葉片型線與速度分布控制參數(shù)間的關(guān)系,總結(jié)提煉出了與葉輪內(nèi)部流動(dòng)特征直接相關(guān)的最大載荷系數(shù)及其位置、進(jìn)口減速比、最大減速比、吸力邊相對(duì)速度進(jìn)口斜率等速度分布控制參數(shù)。并在此基礎(chǔ)上,通過研究分析建立了合理可靠的速度分布數(shù)學(xué)模型,并確定了流道內(nèi)的速度分布,獲得了葉片型線。其次,采用了考慮旋轉(zhuǎn)與曲率的二維湍流邊界層動(dòng)量積分方程,實(shí)現(xiàn)了邊界層厚度的準(zhǔn)確計(jì)算。據(jù)此建立了基于控制速度分布優(yōu)化設(shè)計(jì)系統(tǒng),并編寫了 C語言程序軟件。最后,運(yùn)用所編寫的優(yōu)化設(shè)計(jì)系統(tǒng)軟件對(duì)兩個(gè)不同型號(hào)的高效離心風(fēng)機(jī)進(jìn)行優(yōu)化,運(yùn)用數(shù)值模擬的方法對(duì)風(fēng)機(jī)優(yōu)化前后性能和流場(chǎng)進(jìn)行對(duì)比分析,結(jié)果表明優(yōu)化設(shè)計(jì)后的離心風(fēng)機(jī)在設(shè)計(jì)流量下,1#和2#風(fēng)機(jī)優(yōu)化后全壓均高于原型風(fēng)機(jī),效率分別提高了 5.12%和4.05%,并且全工況效率均得到了提升,說明本文所建立的設(shè)計(jì)系統(tǒng)是可行的。
[Abstract]:Centrifugal fan is widely used in cement, electric power, chemical industry, iron and steel industry as a general mechanical equipment for conveying gas, and the centrifugal fan used in these fields has the characteristics of large quantity and high power of single machine. Therefore, it has important economic benefits to set up an optimal design system for centrifugal fan impellers for large industrial use. In this paper, an optimal design system for centrifugal fan impellers is established, which includes the optimization of the overall parameters and the structural profile of the impeller. The overall optimum design of centrifugal impeller is realized. Firstly, the formation mechanism and basic characteristics of flow loss in centrifugal impeller passage (boundary layer growth and separation, secondary flow, stratification effect, etc.) are studied. The relationship between these complex flow effects and the flow parameters and velocity distribution in the channel is analyzed. The inlet acceleration coefficient, equivalent expansion angle, load coefficient and inlet deceleration ratio are proposed. Secondly, the relationship between the overall parameters of impeller structure and internal flow characteristics is established by using the control parameters as a bridge, and the optimization criteria and objective functions which can not only control the flow loss but also guarantee the design requirements are established. Through theoretical analysis, the design criteria for minimizing the secondary flow effect on the meridian plane are obtained, and the distribution of the meridian velocity along the streamline is given. The optimal design of the front disc profile is realized. The relationship between the blade profile and the control parameters of the velocity distribution is established by using the velocity distribution as a bridge, and the maximum load coefficient and its position directly related to the internal flow characteristics of the impeller are summarized and refined. The velocity distribution control parameters such as inlet deceleration ratio, maximum deceleration ratio and relative velocity slope of suction edge are obtained. On the basis of this, a reasonable and reliable mathematical model of velocity distribution is established through research and analysis, and the velocity distribution in the channel is determined. The blade profile is obtained. Secondly, the momentum integral equation of two-dimensional turbulent boundary layer considering rotation and curvature is adopted to realize the accurate calculation of the boundary layer thickness. Based on this, the optimal design system based on the control velocity distribution is established. Finally, two different types of high efficiency centrifugal fan are optimized by using the software of optimization design system, and the performance and flow field of the fan before and after optimization are compared and analyzed by numerical simulation method. The results show that the total pressure of the centrifugal fan after optimization is higher than that of the prototype fan at the design flow rate, and the efficiency is increased by 5.12% and 4.05 respectively, and the efficiency of the whole working condition is improved. It shows that the design system established in this paper is feasible.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH432
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭愛華;;超高速離心葉輪中固體顆粒運(yùn)動(dòng)軌跡的數(shù)值模擬與分析[J];機(jī)電工程;2010年08期
2 李明達(dá);有限元法對(duì)離心葉輪的應(yīng)力分析[J];南京航空航天大學(xué)學(xué)報(bào);1978年04期
3 沈天耀;離心葉輪的氣動(dòng)優(yōu)化問題[J];浙江大學(xué)學(xué)報(bào);1985年05期
4 尹澤勇,尹晶,任培正,趙曉平;離心葉輪的三維有限元循環(huán)對(duì)稱應(yīng)力分析[J];計(jì)算結(jié)構(gòu)力學(xué)及其應(yīng)用;1987年01期
5 徐興;李繼紅;王景美;;離心葉輪的軸對(duì)稱有限元分析[J];機(jī)械強(qiáng)度;1989年02期
6 張錦,王文亮,陳向均;帶分流葉片離心葉輪的動(dòng)力分析技術(shù)[J];航空學(xué)報(bào);1991年01期
7 劉一華;吳國(guó)璋;;復(fù)合材料離心葉輪的強(qiáng)度分析[J];機(jī)械強(qiáng)度;1992年04期
8 ;PERFORMANCE CHARACTERISTICS AND VISCOUS FLOW ANALYSIS OF CENTRIFUGAL PUMPS[J];Chinese Journal of Mechanical Engineering(English Edition);1995年01期
9 李意民,謝和平,李江林,張憶;離心葉輪入口流動(dòng)的動(dòng)力學(xué)描述[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);1998年02期
10 邱凱,,徐自力,王尚錦;采用復(fù)約束旋轉(zhuǎn)模態(tài)子結(jié)構(gòu)法分析離心葉輪振動(dòng)特性[J];西安交通大學(xué)學(xué)報(bào);1999年05期
相關(guān)會(huì)議論文 前7條
1 張家忠;劉雁;王平;;離心葉輪類周期循環(huán)對(duì)稱結(jié)構(gòu)模態(tài)局部化現(xiàn)象分析[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
2 嚴(yán)敬;嚴(yán)利;;對(duì)美國(guó)最新離心葉輪設(shè)計(jì)資料的分析與介紹[A];全面建設(shè)小康社會(huì):中國(guó)科技工作者的歷史責(zé)任——中國(guó)科協(xié)2003年學(xué)術(shù)年會(huì)論文集(上)[C];2003年
3 張家忠;劉雁;王平;;離心葉輪類周期循環(huán)對(duì)稱結(jié)構(gòu)模態(tài)局部化現(xiàn)象分析[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
4 陳大力;張利民;趙黎;劉金南;盧洪林;;某航空發(fā)動(dòng)機(jī)離心葉輪葉片掉塊故障振動(dòng)分析[A];第11屆全國(guó)轉(zhuǎn)子動(dòng)力學(xué)學(xué)術(shù)討論會(huì)(ROTDYN2014)論文集(下冊(cè))[C];2014年
5 康燦;楊敏官;;離心葉輪內(nèi)部的汽蝕機(jī)理與流動(dòng)結(jié)構(gòu)[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(上)[C];2005年
6 趙偉國(guó);孫建平;;基于CFD的離心葉輪切割研究[A];農(nóng)業(yè)機(jī)械化與新農(nóng)村建設(shè)——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2006年學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2006年
7 羅陽軍;;基于APDL的離心葉輪參數(shù)化優(yōu)化設(shè)計(jì)[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
相關(guān)碩士學(xué)位論文 前10條
1 吳濤;加工誤差對(duì)離心葉輪氣動(dòng)性能的影響分析[D];浙江大學(xué);2015年
2 馬季;彎掠離心葉輪流動(dòng)機(jī)理研究及氣動(dòng)優(yōu)化[D];北京理工大學(xué);2015年
3 翁建松;組合旋轉(zhuǎn)分離器模型機(jī)數(shù)值模擬研究[D];華中科技大學(xué);2014年
4 潘愛強(qiáng);基于速度分布控制的離心葉輪三維氣動(dòng)優(yōu)化設(shè)計(jì)方法的研究[D];浙江大學(xué);2016年
5 王牧蘇;具有分流葉片跨聲速離心葉輪內(nèi)部流動(dòng)的數(shù)值研究[D];天津大學(xué);2014年
6 易U嗹
本文編號(hào):1643030
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1643030.html