陶瓷復(fù)合材料與金屬配副的摩擦學(xué)特性研究
本文選題:陶瓷復(fù)合材料 切入點(diǎn):海水 出處:《陜西科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本課題來源于國家自然科學(xué)青年基金項(xiàng)目(51405278)。論文針對海水環(huán)境、干摩擦和純水環(huán)境下,Si_3N_4-hBN陶瓷復(fù)合材料與金屬配副的摩擦學(xué)特性進(jìn)行了研究,重點(diǎn)對海水環(huán)境下摩擦副摩擦磨損機(jī)理和潤滑進(jìn)行了深入的探討,系統(tǒng)地進(jìn)行了不同外部因素(速度、載荷)以及內(nèi)部因素(hBN的含量)下Si_3N_4-hBN復(fù)合陶瓷與軸承鋼(GCr15)配副的摩擦學(xué)性能試驗(yàn)。旨在探究海水環(huán)境下內(nèi)外因素對Si_3N_4-hBN/金屬摩擦副的摩擦磨損性能的交互影響。利用MMW-1型立式萬能摩擦磨損試驗(yàn)機(jī)進(jìn)行摩擦學(xué)試驗(yàn),借助掃描電子顯微鏡(SEM)、X射線衍射儀(XRD)、X射線光電子能譜儀(XPS)和拉曼光譜(Raman)等測試分析手段,觀察和分析摩擦表面的微觀形貌和物相組成。本論文完成的研究工作如下所述:(1)本論文研究了在海水環(huán)境下,載荷和速度對Si_3N_4-hBN/GCr15摩擦副的摩擦學(xué)性能的影響。結(jié)果表明,載荷的增大不能有效地降低摩擦副的摩擦因數(shù)和磨損率,當(dāng)載荷持續(xù)增大至30N,摩擦因數(shù)達(dá)1.41,盤的磨損率能達(dá)到8.8×10-5mm~3/Nm;另一方面,隨著速度的增大,摩擦因數(shù)和磨損率顯著降低。綜合來看,當(dāng)載荷為10N,速度為1.73m/s時(shí),Si_3N_4-hBN/GCr15摩擦副獲得最佳的摩擦學(xué)特性,摩擦因數(shù)低至0.03,銷和盤的磨損率均不超過1.4×10-5mm~3/Nm。當(dāng)速度一定時(shí)(0.52m/s),載荷變化為10N時(shí),摩擦副的磨損機(jī)制以粘著磨損和腐蝕磨損為主,其中Si_3N_4-10%hBN(即hBN含量為10wt.%,記為SN10)與GCr15配副的摩擦因數(shù)可降低至0.2,這主要?dú)w因于摩擦表面發(fā)生了摩擦化學(xué)反應(yīng),生成具有較好潤滑特性的摩擦產(chǎn)物,對摩擦副具有邊界潤滑作用;當(dāng)載荷增加至20N和30N時(shí),摩擦表面不能形成有效的保護(hù)物質(zhì),摩擦因數(shù)在0.4~1.4之間。當(dāng)載荷一定時(shí)(10N),速度變化為0.86m/s時(shí),摩擦副的因數(shù)在0.21~0.48之間;當(dāng)速度增至1.73m/s,摩擦副的摩擦因數(shù)大幅度降低至0.03~0.25之間,這主要是速度的增大促進(jìn)了表面的摩擦化學(xué)反應(yīng),使摩擦表面形成了更加完整的自潤滑物質(zhì),使摩擦副進(jìn)入了流體潤滑狀態(tài)。(2)干摩擦條件下,在載荷為10N,速度為1.73m/s時(shí),Si_3N_4-hBN/GCr15摩擦副的摩擦因數(shù)最低為0.49,銷和盤的磨損率整體較大,其磨損機(jī)制為磨粒磨損和粘著磨損;純水環(huán)境下,在相同的載荷和速度條件下,摩擦因數(shù)有一定幅度的降低至0.06,銷的磨損率降低至3.23×10~(-6)mm~3/Nm,均高于海水環(huán)境下的摩擦因數(shù)和磨損率。(3)在海水環(huán)境和純水環(huán)境下,hBN的加入顯著地降低了Si_3N_4-hBN/GCr15摩擦副的摩擦因數(shù)和磨損率。例如,在海水環(huán)境下,當(dāng)載荷為10N,速度是1.73m/s時(shí),隨著hBN的添加,摩擦因數(shù)由純Si_3N_4的0.5降至SN10的0.03。這主要是歸因于兩方面:一方面,hBN本身自潤滑性,能夠?qū)δΣ帘砻嫫鸬揭欢ǖ臏p摩作用;另一方面,Si_3N_4和hBN會與水分子發(fā)生摩擦化學(xué)反應(yīng),同時(shí)Si_3N_4-hBN在摩擦過程中易在表面形成剝落坑,反應(yīng)產(chǎn)物堆積在剝落坑中并被拖曳成膜,起到保護(hù)和潤滑的作用。(4)在海水環(huán)境下,Si_3N_4-hBN復(fù)合陶瓷表現(xiàn)出更優(yōu)異的摩擦學(xué)特性。經(jīng)研究發(fā)現(xiàn),在海水環(huán)境中反應(yīng)產(chǎn)物SiO_2是以膠體的形式存在,而純水中由于沒有Na~+、Cl~-等離子的凝聚作用,所以SiO_2很容易被水流帶走,這就導(dǎo)致在摩擦表面形成的潤滑膜較薄,無法實(shí)現(xiàn)有效的潤滑作用;而海水中含有的Na~+、Cl~-能夠加劇SiO_2在摩擦表面凝聚成硅膠,Ca~(2+)、Mg~(2+)能夠在GCr15摩擦表面沉積淤泥狀的CaCO_3和Mg(OH)_2,使摩擦副處于邊界潤滑的狀態(tài)。因此,海水對摩擦副具有復(fù)合潤滑作用,使其相比于干摩擦、純水具有更好的摩擦學(xué)特性。本論文的研究表明,在海水環(huán)境中,Si_3N_4-hBN/GCr15摩擦副在特定條件下具有較好的摩擦學(xué)特性。這不僅為海洋工程裝備的開發(fā)和應(yīng)用提供了技術(shù)指導(dǎo),還一定程度上豐富和完善了陶瓷摩擦學(xué)理論,具有重要的工程應(yīng)用價(jià)值和科學(xué)研究意義。
[Abstract]:This subject comes from the project of the National Natural Science Foundation of youth (51405278). The thesis focuses on the marine environment, dry friction and water environment, the tribological properties of Si_3N_4-hBN ceramic composites and metal pairs are studied, with emphasis on the marine environment, the friction wear and lubrication mechanism was deeply investigated systematically different external factors (velocity, load) and internal factors (hBN content) of Si_3N_4-hBN composite ceramics and bearing steel (GCr15) with tribological properties. To explore the factors inside and outside the side friction under seawater environment interaction friction and wear properties of Si_3N_4-hBN/ metal. The effect of vertical universal friction and wear testing machine using MMW-1 tribology experiment type, by means of scanning electron microscopy (SEM), X ray diffraction (XRD), X ray photoelectron spectroscopy (XPS) and Raman spectroscopy (Raman) methods, the concept of Observation and analysis of microstructure and phase composition of the friction surface. Research in this thesis are as follows: (1) this paper researches in the seawater environment, influence of load and speed on the tribological properties of Si_3N_4-hBN/GCr15. The results showed that the increase of the load can not effectively reduce the friction factor and the wear rate, when the load increase to 30N, the friction coefficient reaches 1.41, the disc wear rate can reach 8.8 * 10-5mm~3/Nm; on the other hand, with the increase of the velocity, friction coefficient and wear rate decreased significantly. In general, when the load is 10N, the speed is 1.73m/s, the friction pair of Si_3N_4-hBN/GCr15 obtained the best tribological properties. The low friction coefficient to 0.03, and the rate of wear of a pin disc are not more than 1.4 x 10-5mm~3/Nm. when a certain speed (0.52m/s), the load change is 10N, the wear mechanism of the adhesive side wear and corrosion wear, The Si_3N_4-10%hBN (i.e., hBN content of 10wt.%, denoted as SN10) with friction coefficients and GCr15 can be reduced to 0.2, which is mainly due to the friction surface of tribochemical reaction, friction product has good lubricating properties, with boundary lubrication friction; when the load increased to 20N and 30N, friction the surface can not form effective protective material, the friction coefficient between 0.4~1.4. When the load is fixed (10N), rate of change is 0.86m/s, the side friction factor between 0.21~0.48; when the speed is increased to 1.73m/s, the friction factor is greatly reduced to 0.03~0.25, which is mainly to promote the chemical friction speed increases the reaction surface, the formation of self lubricating material more complete surface friction, the friction in the fluid lubrication condition. (2) under dry friction condition, the load is 10N, the speed is 1.73m/s, Si_3N_4-hBN/GCr15 The friction factor for a minimum of 0.49, and the wear rate of pin disc large, the wear mechanism is abrasive wear and adhesive wear; water environment, in the same load and speed conditions, the friction coefficient decreases to a certain extent to 0.06, pin wear rate decreased to 3.23 * 10~ (-6) mm~3/Nm, were higher than the friction coefficient and wear rate of the seawater environment. (3) in the water environment and water environment, the addition of hBN significantly reduced the Si_3N_4-hBN/GCr15 friction factor and wear rate. For example, in the marine environment, when the load is 10N, the speed is 1.73m/s, with the addition of hBN the friction coefficient of pure Si_3N_4, from 0.5 to SN10 0.03., which is mainly attributed to two aspects: on the one hand, hBN itself to self lubrication, friction reduction effect on the friction surface; on the other hand, Si_3N_4 and hBN will have friction chemical reaction with water molecules, and Si _3N_4-hBN in the friction process to form pits on the surface, the reaction products accumulate in the pits and towed into film, the protection and lubricating effect. (4) in the seawater environment, Si_3N_4-hBN composite ceramics exhibit excellent tribological properties. The study found that in the sea water environment in the reaction products of SiO_2 in colloidal form, and pure water because there is no Na~+, Cl~- plasma coagulation, so SiO_2 is easy to flow away, which leads to the lubricating film formed on the friction surface is thin, can not achieve effective lubrication; and sea water containing Na~+, Cl~- can increase in the friction surface condensed into SiO_2 silica gel, Ca~ (2+), Mg~ (2+) to the friction surface of silt like in GCr15 CaCO_3 and Mg _2 (OH), which is the boundary lubrication state of friction. Therefore, the seawater with composite lubrication friction, which compared to the dry friction, Pure water has better tribological properties. The research shows that in seawater, Si_3N_4-hBN/GCr15 friction under certain conditions has better tribological properties. This is not only for the development and application of marine engineering equipment to provide technical guidance, but also to a certain extent, enrich and improve the ceramic tribology theory, has important engineering application the value and scientific significance.
【學(xué)位授予單位】:陜西科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH117.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳威;張達(dá);艾旭;呂政琳;劉強(qiáng);;Si_3N_4-hBN陶瓷材料的常、熱壓制備和摩擦行為分析[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期
2 文懷興;孫建建;陳威;;海洋環(huán)境下關(guān)鍵摩擦副材料的摩擦學(xué)研究現(xiàn)狀與展望[J];材料導(dǎo)報(bào);2016年15期
3 文懷興;孫建建;陳威;;氮化硅陶瓷軸承潤滑技術(shù)的研究現(xiàn)狀與發(fā)展趨勢[J];材料導(dǎo)報(bào);2015年17期
4 曹攀;周婷婷;白秀琴;袁成清;;深海環(huán)境中的材料腐蝕與防護(hù)研究進(jìn)展[J];中國腐蝕與防護(hù)學(xué)報(bào);2015年01期
5 邱中梁;胡曉函;焦慧鋒;范華濤;;“蛟龍?zhí)枴陛d人潛水器液壓系統(tǒng)設(shè)計(jì)研究[J];液壓與氣動;2014年02期
6 劉銀水;吳德發(fā);李東林;趙旭峰;李曉暉;;海水液壓技術(shù)在深海裝備中的應(yīng)用[J];機(jī)械工程學(xué)報(bào);2014年02期
7 徐麗萍;毛杰;張吉阜;鄧暢光;劉敏;周克崧;;表面工程技術(shù)在海洋工程裝備中的應(yīng)用[J];中國材料進(jìn)展;2014年01期
8 任書芳;孟軍虎;呂晉軍;楊生榮;;Ti_3SiC_2、不銹鋼和NiCr合金在人工海水中的摩擦學(xué)性能[J];摩擦學(xué)學(xué)報(bào);2013年04期
9 董從林;白秀琴;嚴(yán)新平;袁成清;;海洋環(huán)境下的材料摩擦學(xué)研究進(jìn)展與展望[J];摩擦學(xué)學(xué)報(bào);2013年03期
10 田欣利;王朋曉;吳志遠(yuǎn);唐修檢;王龍;;Si_3N_4和CCr15對巴氏合金摩擦副的摩擦磨損性能研究[J];裝甲兵工程學(xué)院學(xué)報(bào);2013年02期
相關(guān)碩士學(xué)位論文 前7條
1 艾旭;不同含量hBN陶瓷復(fù)合材料自潤滑特性研究[D];陜西科技大學(xué);2016年
2 申鳳梅;海水柱塞泵關(guān)鍵摩擦副的材料選配及可靠性研究[D];北京工業(yè)大學(xué);2014年
3 李勇霞;高性能氮化硅的制備及其性能研究[D];哈爾濱工業(yè)大學(xué);2013年
4 陳祥健;Si_3N_4基陶瓷的制備及性能研究[D];中南大學(xué);2012年
5 王曉楠;不同試驗(yàn)條件下表面微結(jié)構(gòu)的摩擦學(xué)特性研究[D];南京航空航天大學(xué);2012年
6 徐揚(yáng);水潤滑條件下陶瓷類復(fù)合材料摩擦學(xué)性能的研究[D];南京航空航天大學(xué);2010年
7 周芳;C~+注入Si_3N_4陶瓷的表面結(jié)構(gòu)及水潤滑摩擦學(xué)特性研究[D];南京航空航天大學(xué);2009年
,本文編號:1623306
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1623306.html