可升降泳池平臺結構設計及力學特性研究
本文選題:可升降泳池 切入點:平臺結構 出處:《江蘇大學》2017年碩士論文 論文類型:學位論文
【摘要】:傳統(tǒng)泳池功能單一,易造成資源浪費,且無法滿足不同人群對水深的要求?缮涤境氐乃羁梢愿鶕(jù)需要進行調整,并可一池多用,大大提高泳池的使用效率。目前國內關于可升降泳池的研究極少,極大地制約了我國泳池可升降技術的發(fā)展。可升降泳池平臺結構作為主體承重部件,對其進行設計、分析及優(yōu)化具有重要的意義。本文設計了一種可升降泳池平臺結構,并運用有限元法,對可升降泳池平臺結構進行了深入研究,主要研究內容如下:(1)根據(jù)實際應用要求,提出了一種剪叉式可升降泳池設計方案,設計了可升降泳池平臺結構,并以靜力學理論、模態(tài)分析理論、多目標驅動優(yōu)化法為基礎,對該平臺結構進行了優(yōu)化。(2)以靜力學理論為基礎,在恒載工況下,研究了豎桿高度、格子數(shù)及支撐座位置對平臺結構靜力學性能的影響,結果表明:豎桿高度、格子數(shù)及支撐座位置的變化均會對平臺結構靜力學性能產(chǎn)生影響;根據(jù)恒載工況下的靜力學分析結果,得出了恒載工況下靜力學性能最優(yōu)的平臺結構;研究了該平臺結構在變載工況下的變形、應力及應變情況,得出了平臺結構的安全載重范圍。(3)以模態(tài)分析理論為基礎,對恒載工況下的最優(yōu)平臺結構進行了模態(tài)分析,得出了該平臺結構的前六階振型云圖及對應的固有頻率和振幅;對平臺結構的前六階振型云圖進行了分析,以降低平臺結構振幅為目標,提出了八種改進方案,對比了八種改進方案的模態(tài)分析結果,得出了最優(yōu)改進方案。(4)以降低可升降泳池平臺結構的質量為目標,以平臺結構的剛度和強度為約束條件,采用ANSYS Workbench的優(yōu)化分析工具GDO(多目標驅動優(yōu)化法),對恒載工況下最優(yōu)的平臺結構進行了優(yōu)化設計,在綜合考慮實際應用及優(yōu)化參數(shù)靈敏度差異的基礎上,最終確定了最優(yōu)設計方案;通過與優(yōu)化前平臺結構進行對比分析,發(fā)現(xiàn)優(yōu)化后平臺結構的總質量降低了22.54%,實現(xiàn)了平臺結構的輕量化設計。
[Abstract]:The traditional swimming pool has a single function, which is easy to cause waste of resources and can not meet the requirements of different people for water depth. The water depth of the elevating and descending swimming pool can be adjusted according to the need, and the pool can be used in many ways. At present, there is very little research on the lifting pool in our country, which greatly restricts the development of the swimming pool lifting technology in our country. The platform structure of the lifting pool is designed as the main bearing part. It is of great significance to analyze and optimize the structure. In this paper, a kind of platform structure is designed, and the finite element method is used to study the structure of the platform. The main research contents are as follows: 1) according to the requirements of practical application, In this paper, a design scheme of shear-fork adjustable swimming pool is proposed, and the platform structure is designed, which is based on static theory, modal analysis theory and multi-objective driving optimization method. Based on statics theory, the influence of vertical bar height, lattice number and support seat position on the static performance of the platform structure is studied under dead load condition. The results show that the height of the vertical rod is the same as the height of the vertical rod, and the influence of the lattice number and the position of the support seat on the static performance of the platform structure is studied. The change of lattice number and support seat position will affect the statics performance of the platform structure, and according to the statics analysis results under the dead load condition, the platform structure with the best statics performance under the dead load condition is obtained. In this paper, the deformation, stress and strain of the platform structure under variable load condition are studied. The safe load range of the platform structure is obtained. Based on the modal analysis theory, the modal analysis of the optimal platform structure under dead load condition is carried out. The first six modes of the platform structure and the corresponding natural frequencies and amplitudes are obtained, and the first six modes of the platform structure are analyzed, the aim of which is to reduce the amplitude of the platform structure, and eight improved schemes are put forward. The modal analysis results of eight improved schemes are compared, and the optimal improvement scheme is obtained. The aim is to reduce the quality of the platform structure, and the stiffness and strength of the platform structure are taken as the constraint conditions. The optimization design of the optimal platform structure under dead load condition is carried out by using the optimization analysis tool of ANSYS Workbench (multi-objective driven optimization method). On the basis of synthetically considering the practical application and the sensitivity difference of optimization parameters, the optimal structure of the platform is designed. Finally, the optimal design scheme is determined, and by comparing with the platform structure before optimization, it is found that the total quality of the platform structure is reduced by 22.54, and the lightweight design of the platform structure is realized.
【學位授予單位】:江蘇大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH122
【參考文獻】
相關期刊論文 前10條
1 周折;;ANSYS WORKBENCH在工程仿真中的應用[J];內燃機與配件;2016年08期
2 林曉松;黃志斌;郭巖昕;;響應面方法在建模及模型優(yōu)化中的應用[J];福建工程學院學報;2016年01期
3 韓永鵬;;游泳運動的發(fā)展與前景[J];黑龍江科學;2016年01期
4 帥仁忠;趙艷菊;孫召進;郭建強;;高速列車車體型材的結構靈敏度分析研究[J];鐵道機車車輛;2015年S1期
5 朱中文;張自斌;孔田增;;基于ANSYS Workbench的容器結構尺寸優(yōu)化設計[J];甘肅科技;2015年04期
6 喻永巽;;ANSYS Workbench的應用現(xiàn)狀及分析[J];機電工程技術;2014年09期
7 劉世庚;張德珍;徐淑瓊;;機械結構優(yōu)化設計研究應用及前景展望[J];科技視界;2014年16期
8 王宇;張俊偉;林永龍;;有限元分析軟件Ansys在模態(tài)分析中的應用[J];起重運輸機械;2013年11期
9 楊天平;唐宏;;機械結構優(yōu)化設計應用與趨勢分析[J];電子制作;2013年11期
10 秦仙蓉;孚羅特;劉應花;洪穎;張氫;;基于有限元方法的塔機桁架結構屈曲分析[J];中國工程機械學報;2013年03期
相關博士學位論文 前1條
1 段巍;汽輪機葉片強度可靠性分析的響應面方法研究[D];華北電力大學(河北);2009年
相關碩士學位論文 前10條
1 陳麗婷;高速、高精度數(shù)控銑床電主軸結構優(yōu)化設計及其性能研究[D];浙江大學;2016年
2 王曉鳳;軋機減速器箱體結構優(yōu)化設計[D];大連理工大學;2015年
3 王利;斗輪機有限元分析及前臂架結構優(yōu)化設計[D];武漢理工大學;2014年
4 余衍然;軌道車輛平穩(wěn)性的隨機參數(shù)全局靈敏度分析[D];蘇州大學;2014年
5 王強;新型無桿飛機牽引車車架結構有限元分析及優(yōu)化設計[D];中國民航大學;2013年
6 王勇;基于ANSYS Workbench的卸船機鋼結構分析[D];吉林大學;2012年
7 吳曉偉;基于有限元的框架式液壓機機身結構設計及分析研究[D];合肥工業(yè)大學;2012年
8 黃柯;23米泵車臂架動力學及結構分析與優(yōu)化設計[D];湖南大學;2010年
9 劉文劍;基于ANSYS Workbench的掃描儀結構分析[D];西安電子科技大學;2009年
10 陳俊;基于AWE的滾齒機床身結構剛度優(yōu)化設計[D];南京信息工程大學;2008年
,本文編號:1618250
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1618250.html