高速透平機(jī)械穩(wěn)定性評(píng)價(jià)與控制原理及方法研究
本文選題:旋轉(zhuǎn)機(jī)械 切入點(diǎn):轉(zhuǎn)子穩(wěn)定性 出處:《北京化工大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:乙烯、煉油、天然氣、化肥等流程工業(yè)的生產(chǎn)裝置的機(jī)組容量不斷擴(kuò)大,旋轉(zhuǎn)機(jī)械將面臨著高參數(shù)化(高轉(zhuǎn)速、高流量、高壓比)。這需要加大透平機(jī)械轉(zhuǎn)子軸承跨距,導(dǎo)致轉(zhuǎn)子系統(tǒng)撓性增加,轉(zhuǎn)子-軸承系統(tǒng)的穩(wěn)定性問題將面臨著嚴(yán)峻考驗(yàn)。本論文圍繞高速旋轉(zhuǎn)機(jī)械的穩(wěn)定性問題開展了穩(wěn)定性預(yù)測、評(píng)價(jià)及控制方面的研究,提出了柔性轉(zhuǎn)子系統(tǒng)模態(tài)阻尼比、軸承參數(shù)的辨識(shí)方法,發(fā)明了一種新型電磁主動(dòng)阻尼密封結(jié)構(gòu)以實(shí)現(xiàn)對(duì)轉(zhuǎn)子穩(wěn)定性的控制,具體內(nèi)容如下:1、提出了基于“短時(shí)傅里葉濾波+直接頻響函數(shù)+預(yù)測誤差法”的轉(zhuǎn)子阻尼比識(shí)別方法,解決轉(zhuǎn)子穩(wěn)定性識(shí)別面臨的噪聲干擾、多階模態(tài)混合、陀螺效應(yīng)等問題。從數(shù)值方法和試驗(yàn)方法兩個(gè)角度驗(yàn)證了該方法具有抗噪聲干擾能力好、測試結(jié)果精度高、穩(wěn)定性好的特點(diǎn)。該方法能充分整合整機(jī)頻響函數(shù),對(duì)模態(tài)參數(shù)進(jìn)行統(tǒng)一識(shí)別,提高識(shí)別結(jié)果準(zhǔn)確性。采用兩類典型的離心式壓縮機(jī)結(jié)構(gòu)模型模擬掃頻激勵(lì),研究了考慮密封結(jié)構(gòu)參數(shù)和軸承預(yù)負(fù)荷因素下的識(shí)別情況;結(jié)果表明,該方法可以解決正反進(jìn)動(dòng)模態(tài)疊加問題,能廣泛適用于高速旋轉(zhuǎn)機(jī)械穩(wěn)定性參數(shù)識(shí)別。同時(shí),針對(duì)掃頻識(shí)別方法,提出了兩種信號(hào)預(yù)處理方法,均可以提高頻響函數(shù)特征信號(hào)的信噪比,有利于提高穩(wěn)定性參數(shù)識(shí)別結(jié)果的可靠性。2、揭示了電磁掃頻過程中,電磁激振器線圈偏置電流、擾動(dòng)電流和轉(zhuǎn)子偏心等因素對(duì)穩(wěn)定性參數(shù)識(shí)別結(jié)果的影響規(guī)律。偏置電流會(huì)給轉(zhuǎn)子系統(tǒng)引入負(fù)剛度,引起轉(zhuǎn)子的穩(wěn)定性參數(shù)改變,其對(duì)識(shí)別結(jié)果作用規(guī)律與安裝位置有關(guān);在相同偏置電流情況下,擾動(dòng)電流的幅值對(duì)識(shí)別結(jié)果幾乎沒有影響。指出實(shí)際加載過程應(yīng)選取小的偏置電流,而擾動(dòng)電流根據(jù)不平衡振動(dòng)幅值來選擇。并且在小偏執(zhí)電流加載情況下,可以忽略電磁軸承的位移反饋力,直接使用擾動(dòng)電流作為系統(tǒng)輸入進(jìn)行參數(shù)識(shí)別。圍繞如何在實(shí)際機(jī)器上實(shí)現(xiàn)掃頻激勵(lì)的問題,開發(fā)了針對(duì)實(shí)際應(yīng)用機(jī)組的掃頻激勵(lì)的軟硬件系統(tǒng)。利用電磁掃頻技術(shù)研究了不同預(yù)負(fù)荷、不同轉(zhuǎn)速、不同潤滑油供油參數(shù)以及不同軸承靜態(tài)比載荷的軸承-轉(zhuǎn)子系統(tǒng)穩(wěn)定性變化情況。研究結(jié)果表明,預(yù)負(fù)荷增加、轉(zhuǎn)速增加、比載荷增加會(huì)降低被測轉(zhuǎn)子系統(tǒng)的穩(wěn)定性,潤滑油油溫(43-48℃)和油壓(0.1 MPa-0.175 MPa)增加可以提高轉(zhuǎn)子穩(wěn)定性。3、提出了基于電磁激勵(lì)和有限元模型識(shí)別柔性轉(zhuǎn)子-軸承系統(tǒng)的軸承參數(shù)的方法。(1)在可以充分安裝傳感器時(shí),采用雙截面插值迭代法。該方法基于有限元模型對(duì)測量數(shù)據(jù)進(jìn)行插值迭代,解決了軸承中心位置和振動(dòng)傳感器測點(diǎn)不一致的問題。該迭代方法收斂快,主剛度和主阻尼的識(shí)別結(jié)果波動(dòng)小;試驗(yàn)數(shù)據(jù)處理結(jié)果中,測量振型與預(yù)測振型十分匹配。(2)在安裝傳感器位置受限時(shí),采用閉環(huán)系統(tǒng)參數(shù)辨識(shí)法。將軸承-轉(zhuǎn)子系統(tǒng)轉(zhuǎn)為控制對(duì)象與控制器的閉環(huán)控制系統(tǒng)后,軸承參數(shù)作為控制器參數(shù)進(jìn)行識(shí)別,規(guī)避了軸承中心位置和振動(dòng)測點(diǎn)不一致的問題。兩種方法采用單點(diǎn)頻率激勵(lì)獲得的軸承參數(shù)來預(yù)測的模態(tài)參數(shù)和通過掃頻識(shí)別的模態(tài)參數(shù)都一致,驗(yàn)證了該方法識(shí)別結(jié)果的準(zhǔn)確度和可信度,為簡化掃頻測試轉(zhuǎn)子穩(wěn)定性提供了基礎(chǔ)。準(zhǔn)確獲取軸承參數(shù)可以避免昂貴的滿負(fù)荷、滿壓力的穩(wěn)定性測試試驗(yàn)。4、發(fā)明了電磁阻尼密封及帶這種密封結(jié)構(gòu)的離心式壓縮機(jī)結(jié)構(gòu),解決了控制器在離心壓縮機(jī)內(nèi)的工程安裝問題,標(biāo)定試驗(yàn)證明了發(fā)明的主動(dòng)電磁阻尼密封結(jié)構(gòu)具有良好的力學(xué)性能參數(shù),能夠滿足振動(dòng)控制需要。結(jié)合電磁軸承的線性化控制力方程,推導(dǎo)了轉(zhuǎn)子穩(wěn)定性控制原理方程。從基本控制原理出發(fā),研究了針對(duì)轉(zhuǎn)子失穩(wěn)故障的控制方法,提出了反向交叉剛度增穩(wěn)和主動(dòng)阻尼增穩(wěn)兩種控制算法。采用數(shù)值仿真和試驗(yàn)驗(yàn)證的方法證明了兩種算法能夠很好地在線解決轉(zhuǎn)子失穩(wěn)問題,提高轉(zhuǎn)子-軸承系統(tǒng)穩(wěn)定性。總之,本文的研究成果對(duì)指導(dǎo)高速透平機(jī)械的設(shè)計(jì)、合格檢驗(yàn)和失穩(wěn)控制,具有理論和現(xiàn)實(shí)的工程意義。穩(wěn)定性評(píng)價(jià)方法和穩(wěn)定性測試技術(shù)可服務(wù)于工程測試,并為穩(wěn)定性和軸承參數(shù)測試等相關(guān)試驗(yàn)研究提供技術(shù)支撐;發(fā)明的控制結(jié)構(gòu)使得主動(dòng)電磁控制距離工業(yè)應(yīng)用更進(jìn)一步,可解決轉(zhuǎn)子失穩(wěn)問題。
[Abstract]:Ethylene, oil refining, natural gas, fertilizer and other production equipment in process industry unit capacity continues to expand, the rotating machinery will be faced with high parameter (high speed, high flow, high pressure ratio). The need to increase the turbine rotor bearing span, resulting in increased stability of the flexible rotor system, rotor bearing system will be faced with a severe test. This paper carried out the stability prediction around the stability problem of high speed rotating machinery, research evaluation and control, proposed a flexible rotor system modal damping ratio identification method of bearing parameters, invented a new type of electromagnetic active damping sealing structure to control the stability of the rotor, the specific contents are as follows: 1, put forward the specific identification method based on the rotor damping Fourier filter + + direct frequency response function prediction error method, to solve the noise jamming rotor stability recognition, multi order mode Mixed state, gyroscopic effect and other issues. From two aspects of numerical method and test method shows that this method has good anti noise ability, the test results of high accuracy, good stability. This method can fully integrate the frequency response function, unified identification of modal parameters, improve the accuracy of recognition results. By using two types of centrifugal structure compressor model simulation of frequency scanning, considering the identification of seal structure parameters and bearing preload factors; results show that the method can solve the problem of modal superposition and precession, can be widely used in high speed rotating machinery stability parameter identification. At the same time, the sweep frequency identification method, puts forward two kinds of signal the pretreatment method can improve the frequency response function characteristics of the signal to noise ratio, to improve the stability and reliability of.2 parameter identification results, reveals the electromagnetic frequency sweep process Current, electromagnetic exciter coil bias, influence of disturbance current and rotor eccentricity on the stability parameter identification results. The bias current to the rotor system will introduce negative stiffness, stability of rotor parameters change, its effect on the recognition results of rules associated with the installation position; in the same bias current, current amplitude perturbation almost no impact on the recognition results. It is pointed out that the actual loading process should select a small bias current, and current disturbance is selected according to the unbalance vibration amplitude. And in the case of small current biased loading, displacement can be ignored electromagnetic bearing force feedback, the direct use of perturbation current as the system input parameters. Focusing on how to achieve sweep the problem of frequency excitation on real machines, the development of hardware and software of the system according to the actual application of sweep unit incentive. To study the technology of frequency sweep by electromagnetic With the pre load, different speed, different parameters and different lubricating bearing static load ratio of bearing rotor system stability changes. The results show that the pre load increases, the speed increases, the increase of load ratio will reduce the stability of the measured rotor system, the lubricating oil temperature (43-48 DEG C) and pressure (0.1 MPa-0.175 MPa) the increase can improve the stability of the rotor.3, and puts forward the method of bearing parameter identification of electromagnetic excitation and finite element model of flexible rotor bearing system based on the sensor (1) can be installed in full, using double section interpolation iterative method. The method of finite element model based on the measured data of the interpolation iteration, to solve the measuring point is not consistent the problem of bearing center position and vibration sensor. The convergence of the iterative method, the stiffness and damping of the main identification results of small fluctuations; test data, measurement and prediction of vibration mode Type very match. (2) in the installation position of sensor is limited by the closed-loop system parameter identification method. The bearing rotor system for closed-loop control object and controller, bearing parameters as the parameters identification, to avoid the bearing center position and vibration measuring points of the inconsistency of the modal parameters of two. Methods using single point frequency to predict excitation bearing parameters obtained and the modal parameter identification of sweep frequency, accuracy and reliability is verified by the results of the method, to simplify the frequency sweep test rotor stability provides a basis. To obtain accurate parameters of full load bearing can avoid expensive, the stability test of.4 full of pressure, the invention of the electromagnetic damping and sealing with the sealing structure of centrifugal compressor, solves the installation problem in the engineering controller in a centrifugal compressor, calibration test Proved that the active electromagnetic damping sealing structure has good mechanical properties, can meet the needs of controlling vibration. Using the linear control equation of electromagnetic bearing, equation of rotor stability control principle. Starting from the basic principle, research on the control method of the fault steady loss of rotor, proposed reverse cross stiffness augmentation and active damping augmentation of two control algorithms. By using the numerical simulation method and experiment proved that the two algorithm can well solve the problem of instability of Rotor line, improve the stability of rotor bearing system. The research results of this paper for the design of high-speed turbomachinery guidance, inspection and control instability and it has theoretical and practical engineering significance. The stability evaluation method and stability testing technology can serve the engineering test, and related test stability and bearing parameters testing experience The research provides technical support; the invention of the control structure makes the active electromagnetic control further to the industrial application, and can solve the problem of rotor instability.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH133.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王小虎;陸雯;李鴻光;孟光;;磁流變液潤滑浮環(huán)軸承及其在轉(zhuǎn)子振動(dòng)控制中的應(yīng)用[J];振動(dòng)與沖擊;2017年12期
2 王娟;李軍強(qiáng);楊冬;陳貴亮;;旋轉(zhuǎn)式磁流變阻尼器及其驅(qū)動(dòng)器研究[J];機(jī)械設(shè)計(jì)與研究;2016年06期
3 姚紅良;王重陽;陳子冬;聞邦椿;;轉(zhuǎn)子系統(tǒng)永磁變剛度抑振及吸振研究[J];機(jī)械工程學(xué)報(bào);2017年09期
4 馬彩東;吳云;張志波;代輝;;單轉(zhuǎn)子軸流壓氣機(jī)渦動(dòng)力學(xué)失穩(wěn)機(jī)理研究[J];推進(jìn)技術(shù);2016年12期
5 呂楠;丁鴻昌;劉魯偉;李茂源;;基于磁流變阻尼器的磁懸浮轉(zhuǎn)子系統(tǒng)的振動(dòng)特性研究[J];山東科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期
6 牛曉東;王維民;李啟行;邵星;翟功濤;;一種用于離心壓縮機(jī)轉(zhuǎn)子穩(wěn)定性控制的電磁阻尼器設(shè)計(jì)及應(yīng)用[J];北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期
7 吳超;張建平;尹雪梅;王文;;GMA可控油膜軸承研究進(jìn)展[J];機(jī)床與液壓;2015年23期
8 孫丹;肖忠會(huì);王學(xué)軍;鄭鐵生;孟繼綱;;負(fù)錯(cuò)位密封流動(dòng)特性研究[J];中國電機(jī)工程學(xué)報(bào);2015年12期
9 馬立新;王建梅;薛亞文;唐亮;;油膜軸承試驗(yàn)臺(tái)負(fù)載特性模型的建立與計(jì)算[J];軸承;2014年11期
10 譚禎;李朝峰;太興宇;聞邦椿;;基于有限元法的局部動(dòng)力參數(shù)識(shí)別方法[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年09期
相關(guān)博士學(xué)位論文 前6條
1 邢健;基于磁流變液阻尼器的轉(zhuǎn)子系統(tǒng)振動(dòng)主動(dòng)控制研究[D];北京化工大學(xué);2015年
2 毛文貴;高速電主軸滑動(dòng)軸承—轉(zhuǎn)子系統(tǒng)動(dòng)力學(xué)關(guān)鍵特性參數(shù)識(shí)別[D];湖南大學(xué);2015年
3 宮曉春;可傾瓦軸承—轉(zhuǎn)子系統(tǒng)的非線性動(dòng)力學(xué)分析與主動(dòng)控制[D];哈爾濱工業(yè)大學(xué);2011年
4 劉學(xué)忠;主動(dòng)混合滑動(dòng)軸承—轉(zhuǎn)子系統(tǒng)運(yùn)動(dòng)軌跡控制技術(shù)研究[D];山東大學(xué);2008年
5 吳超;具有主動(dòng)控制功能的油膜軸承研究[D];上海大學(xué);2008年
6 范天宇;彈性支承干摩擦阻尼器減振研究[D];西北工業(yè)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 王雙;旋轉(zhuǎn)機(jī)械滑動(dòng)軸承與密封結(jié)構(gòu)流體動(dòng)力特性研究[D];沈陽航空航天大學(xué);2016年
2 周維;位移差動(dòng)自感式磁流變阻尼器自感應(yīng)性能及動(dòng)力特性實(shí)驗(yàn)研究[D];華東交通大學(xué);2015年
3 劉賓賓;離心壓縮機(jī)軸位移故障機(jī)理研究[D];北京化工大學(xué);2015年
4 伍昌;主動(dòng)電磁軸承—?jiǎng)傂赞D(zhuǎn)子系統(tǒng)的不平衡振動(dòng)控制[D];浙江大學(xué);2015年
5 季超;基于壓電薄膜傳感器的可傾瓦軸承油膜動(dòng)力特性研究[D];上海交通大學(xué);2015年
6 彭U,
本文編號(hào):1607351
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1607351.html