圓管帶式輸送機(jī)傳動(dòng)結(jié)構(gòu)與輸送帶接觸力學(xué)特性分析
本文選題:圓管帶式輸送機(jī) 切入點(diǎn):傳動(dòng)滾筒 出處:《湖南科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:圓管帶式輸送機(jī)是一種新型環(huán)保高效的散料輸送設(shè)備,廣泛應(yīng)用于冶金、礦業(yè)、化工、電力、建材、港口等行業(yè)的散料輸送系統(tǒng)。其傳動(dòng)結(jié)構(gòu)主要包括傳動(dòng)滾筒與托輥。其中,傳動(dòng)滾筒作為動(dòng)力傳遞部件,承受全部驅(qū)動(dòng)載荷及皮帶壓力載荷。托輥為數(shù)量最多的部件,強(qiáng)制輸送帶圓管狀并支撐其運(yùn)行,從而實(shí)現(xiàn)對(duì)物料的封閉輸送。傳動(dòng)滾筒及托輥與輸送帶之間的接觸情況會(huì)影響到傳遞效率及輸送帶受力,影響輸送帶的磨損及使用壽命,從而也會(huì)重影響到整機(jī)的可靠性。首先,以傳動(dòng)結(jié)構(gòu)部件傳動(dòng)滾筒為對(duì)象,基于有限元思想進(jìn)行滾筒的受力分析,分別建立圓柱型、腰鼓型、內(nèi)凹型三種不同結(jié)構(gòu)形式傳動(dòng)滾筒靜力學(xué)與動(dòng)力學(xué)有限元模型,分析三種不同結(jié)構(gòu)形式傳動(dòng)滾筒應(yīng)力分布及變形情況。分析得出:傳動(dòng)滾筒應(yīng)力主要分布在筒體中間區(qū)域,筒體與輻板連接區(qū)域以及輻板上接觸點(diǎn)與奔離點(diǎn)所對(duì)應(yīng)區(qū)域,傳動(dòng)滾筒中間區(qū)域的變形最大;當(dāng)筒體中間位置出現(xiàn)殘余不平衡量時(shí),兩端支撐軸承處振動(dòng)位移和軸承傳遞力大小隨轉(zhuǎn)速成指數(shù)函數(shù)增大。通過對(duì)比三種結(jié)構(gòu)形式傳動(dòng)滾筒力學(xué)性能,得出內(nèi)凹型傳動(dòng)滾筒力學(xué)性能較佳。然后,針對(duì)圓管帶式輸送機(jī)中數(shù)量最多傳動(dòng)結(jié)構(gòu)部件托輥進(jìn)行受力分析,找出影響不同位置處托輥接觸力變化的因素,建立考慮輸送帶彈性的圓管輸送帶-托輥組剛?cè)狁詈蟿?dòng)力學(xué)模型,分析勻速和勻加速兩種典型工況下不同位置處托輥接觸力變化,與沒有考慮輸送帶彈性的剛體動(dòng)力學(xué)模型分析結(jié)果對(duì)比。結(jié)果表明:位于上部三個(gè)托輥所受接觸力等于輸送帶成形力反作用力,主要與輸送帶彈性系數(shù)、面膠厚度及管徑有關(guān);下部三個(gè)托輥所受接觸力等于輸送帶成形力反作用力與各自承受的輸送帶重力分量之和,不僅與成形力影響因素有關(guān),還受單位輸送帶質(zhì)量及托輥間距影響;考慮輸送帶彈性,托輥接觸力平均值減小80%,波動(dòng)值增大4倍以上;勻速下,各托輥接觸力變化過程中出現(xiàn)“尖峰”現(xiàn)象,達(dá)到最小值過程中變化稍緩慢,為周期性變化的高幅值交變載荷;上下兩托輥接觸力平均值及波動(dòng)變化值較其他托輥大;勻加速下,托輥接觸力隨速度增大出現(xiàn)“震蕩”現(xiàn)象。最后,自主設(shè)計(jì)搭建圓管輸送帶-托輥組動(dòng)態(tài)接觸力模擬測(cè)試實(shí)驗(yàn)臺(tái),開展勻速工況下托輥接觸力測(cè)試與分析,結(jié)果表明與剛?cè)狁詈蟿?dòng)力學(xué)模型仿真分析結(jié)果各托輥接觸力變化形式一致,驗(yàn)證了剛?cè)狁詈蟿?dòng)力學(xué)模型分析結(jié)果。
[Abstract]:Circular pipe belt conveyor is a new type of environmental protection and efficient bulk conveying equipment, widely used in metallurgical, mining, chemical, electric power, building materials, port and other industries. The drive drum, as a power transmission component, bears all the driving loads and belt pressure loads. The roller is the largest number of components, which force the conveyer belt to be circular in shape and to support its operation. Thus, the closed conveying of materials can be realized. The contact between the transmission drum and the roller and the conveyor belt will affect the transmission efficiency and the force of the conveyor belt, and affect the wear and service life of the conveyor belt. This will also affect the reliability of the whole machine. First of all, taking the transmission drum of the transmission structure as an object, based on the finite element method, the force of the roller is analyzed, and the cylindrical and waist drum types are established, respectively. The finite element model of statics and dynamics of three kinds of internal concave type drive drum is analyzed, and the stress distribution and deformation of three different structural forms are analyzed. It is concluded that the stress distribution of the driving drum is mainly in the middle region of the cylinder body. The deformation of the middle part of the transmission drum is the largest in the connection region between the cylinder and the radial plate and the corresponding region between the contact point and the runaway point on the radial plate, and when the residual unbalance occurs in the middle position of the cylinder, The vibration displacement and bearing transfer force increase with the rotation speed. By comparing the mechanical properties of three kinds of structural driving drum, it is concluded that the mechanical properties of the inner concave drive drum are better. According to the force analysis of the roller with the largest number of driving structure components in the circular pipe belt conveyor, the factors influencing the contact force of the roller at different positions are found out. A rigid-flexible coupling dynamic model of pipe conveyor belt and roller group considering the elasticity of conveyor belt is established, and the change of roller contact force at different positions under uniform speed and uniform acceleration is analyzed. The results show that the contact force of the top three rollers is equal to the reaction force of the belt forming force, which is mainly related to the elastic coefficient of the conveyor belt, the thickness of the surface glue and the diameter of the pipe. The contact force of the lower three rollers is equal to the sum of the reaction force of the belt forming force and the gravity component of the conveyor belt, which is not only related to the influencing factors of the forming force, but also affected by the quality of the unit conveyor belt and the distance between the rollers. The average contact force of the roller decreases by 80 and the fluctuation value increases by more than 4 times. Under the constant velocity, the phenomenon of "peak" appears in the change of the contact force of each roller, and the change is a little slow in the process of reaching the minimum value, which is the high amplitude alternating load of periodic variation. The average and fluctuating values of the contact force of the top and bottom rollers are larger than those of the other rollers. Under uniform acceleration, the contact force of the two rollers oscillates with the increase of the speed. Finally, Design and build the dynamic contact force simulation test bench of the pipe conveyor belt and roller group, and carry out the testing and analysis of the roller contact force under the constant speed working condition. The results show that the results are consistent with the simulation results of rigid-flexible coupling dynamic model and verify the results of rigid-flexible coupling dynamic model.
【學(xué)位授予單位】:湖南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH222
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王學(xué)文;王淑平;龍日升;楊兆建;劉廣鵬;;重型刮板輸送機(jī)鏈傳動(dòng)系統(tǒng)負(fù)荷啟動(dòng)剛?cè)狁詈辖佑|動(dòng)力學(xué)特性分析[J];振動(dòng)與沖擊;2016年11期
2 關(guān)麗坤;劉麗秋;;起-停式定寬壓力機(jī)剛?cè)狁詈夏P偷膭?dòng)態(tài)仿真分析[J];鍛壓技術(shù);2016年05期
3 李陽(yáng)星;李曉輝;;基于ADAMS平面轉(zhuǎn)彎帶式輸送機(jī)的動(dòng)態(tài)特性[J];黑龍江科技大學(xué)學(xué)報(bào);2015年05期
4 毛君;李曉婧;陳洪月;梁景龍;;帶式輸送機(jī)輸送帶的剛?cè)狁詈蟿?dòng)力學(xué)特性研究[J];機(jī)械傳動(dòng);2015年04期
5 嚴(yán)宏志;朱翰成;葉輝;;4自由度機(jī)器人剛?cè)狁詈戏抡婕敖Y(jié)構(gòu)改進(jìn)[J];機(jī)械設(shè)計(jì);2015年03期
6 宋偉剛;徐亞美;王雷克;;深槽托輥組大傾角輸送機(jī)理分析的仿真方法[J];煤炭學(xué)報(bào);2014年S2期
7 王秀鳳;楊靚;宋偉剛;;平面轉(zhuǎn)彎帶式輸送機(jī)轉(zhuǎn)彎段自然導(dǎo)向托輥組結(jié)構(gòu)分析[J];礦山機(jī)械;2014年06期
8 賓光富;姚劍飛;江志農(nóng);高金吉;;基于有限元模型的轉(zhuǎn)子動(dòng)平衡影響系數(shù)求解法[J];振動(dòng).測(cè)試與診斷;2013年06期
9 孫慧;肖林京;傅舟漁;;凸包形仿生包膠驅(qū)動(dòng)滾筒摩擦傳動(dòng)機(jī)理的分析[J];煤炭工程;2012年10期
10 宋偉剛;王丹;左博;;單點(diǎn)驅(qū)動(dòng)帶式輸送機(jī)動(dòng)力學(xué)分析的半解析方法[J];煤炭學(xué)報(bào);2012年S1期
相關(guān)博士學(xué)位論文 前1條
1 王繁生;帶式輸送機(jī)柔性多體動(dòng)力學(xué)分析方法研究[D];中國(guó)礦業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 王龍凱;渦輪增壓器轉(zhuǎn)子—浮環(huán)軸承系統(tǒng)不平衡振動(dòng)特性研究[D];湖南科技大學(xué);2016年
2 魏成峰;托輥?zhàn)詣?dòng)化生產(chǎn)線控制系統(tǒng)的設(shè)計(jì)與研究[D];沈陽(yáng)理工大學(xué);2015年
3 劉鐵鋼;傳動(dòng)滾筒筒體結(jié)構(gòu)有限元分析[D];大連理工大學(xué);2014年
4 李佰村;帶式輸送機(jī)工況綜合監(jiān)測(cè)系統(tǒng)與整體式斷帶保護(hù)裝置研究[D];中國(guó)礦業(yè)大學(xué);2014年
5 王巖;圓管帶式輸送機(jī)多功能實(shí)驗(yàn)臺(tái)控制系統(tǒng)的開發(fā)[D];東北大學(xué);2011年
6 陳洪亮;圓管帶式輸送機(jī)物料運(yùn)行狀態(tài)及壓陷阻力的研究[D];東北大學(xué);2010年
7 杜錫剛;帶式輸送機(jī)傳動(dòng)滾筒力學(xué)分析及參數(shù)化繪圖[D];太原科技大學(xué);2009年
8 王元元;帶式輸送機(jī)動(dòng)力學(xué)分析模型若干問題的研究[D];東北大學(xué);2006年
,本文編號(hào):1606009
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1606009.html